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MODELLING OF THE TURBINE GENERATORS
J. Dupal*, T. Kuruc*

Summary: The paper deals with the approach to modelling and optimization of
turbine generators whose bodies have primarily non-symetrical geometry and
stiffnesses in two perpendicular planes. To equalize these stiffnesses it is neces-
sary to perform so called Lafoon’s slits to the generator body. Using conclusions
from fracture mechanics we can simulate rotor behaviour respecting slits and de-
termine their optimal depth.

1. Introduction

The different stiffnesses of the turbine generator body in two perpedicular planes paralell with
generator axis can cause the parametric resonances and than the rise of unstability. The very
frequently used way to avoid such unpleasant phenomena presents Lafoon’s slits. Meaning of
this slits can be understood as an instrument for proper stiffness decreasing in corresponding
plane and equalizing both stiffnesses. Scheme of one turbine generator is depicted in fig. 1

Figure 1. Scheme of the turbine generator
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2. Modelling of Lafoon's slits by means of crack finie element
The scheme of the cracked finite element is degiictdig. 2
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Figure 2. Scheme of cracked finite element

One of the possibilities to obtain the stiffnesstnimeof the element uses the stiffness influ-
ence coefficients. Deformation potential energyhefintact element can be expressed in form

1 1M%(9)
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where M () is bending moment andl;(§) means cross-sectional moment of inertia. The
relation expressing energy opening crack can hairsdd from the fracture mechanics ex-

perience in form (Kuruc 2008, Dupal 2001)
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where S,, |,and A means moment of area, cross-sectional momentedianand area, re-
spectively. Analogous quantities correspondinghtodrack area are marked by tilda.
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Figure 3. Cross-section of generator



Using Castigliano's rule e.g.
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we can come to the time dependent periodical ssmmatrix of rotor finite element in form
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where T(t) is transformation matrixk , and K, are stiffness matrices expressed in rotating
coordinate systendnn{ corresponding to the bending in plaégand ¢¢, respectively. The
matrix K is coordinate invariant part corresponding to ltudjnal and torsional deformati-
ons. The matrix £°(t) correspondso the ordeof generalized coordinates as follows:
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The order of element displacements should be finahrranged. Meaning of the individual
symbols follows from the fig. 4
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Figure 4. Element generalized displacements

3. Equation of motion

The special crack finite element matrices were ezl for modelling of slits. Supposing
the permanently open cracks we can come to tharlieguation of motion with periodically
time dependent matrices (1)

TTOMT ()G() +[G + T7 (t)a K Tt +B]q

+[K ¢ +TT(t)(/7VKQ+K )] a(t) =f(t). @)



Individual matrices have meaning as followsT(t)JR™" -transformation matrix,
TT()MT (t)OR™" -mass matrix,G OR™"-gyroscopic matrix,T" (t),K T(t)OR""-
matrix of proportinal radial damping;” (t)7,KQT(t) O R™"-matrix of proportinal tangential
damping,K ¢, BOR™" -stationary part of stiffness matrix and dampingtni, respective-
ly, T"(t)K T(t)OR"™" -stiffness matrix.

The Floquet’'s theory can be used for stability sssent. We can firstly rewrite the eq. (1)
without excitation into the brief form

M (£)éi(t) + B(t)a(t) + K (t)at) = O, )
where meaning of matrices in (2) follows from tleenparison (1) and (2). Adding the identi-
ty

M (£)g(t) - M (t)g(t) =0 3)

to (2) we can transfer the original system of thdirary differencial equations (ODE) of the
second order to system of the first order in form

N(t)x(t) - P(t)x(t) = 0. (4)

The matrices in the last equation have form
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Assuming regularity oN(t) we can come to
X(t) = At)x(t), (6)
where
A(t) = N (t)P(t) DR, @)

The matrix A(t)=A(t+T) is time periodical whose period &= 271/« and « is angular

speed of generator. The measure of instabilitybmaexpressed by means of monodromy ma-
trix eigenvalues. In case all the eigenvaluesrsde the unit circle in complex plane (in-
cluded boundary) the system is stable and viceavénscase of at least one of eigenvalues
lying outside this circle, the system is unstahkt introduce the fundamental matrix of solu-
tion starting from independent initial conditioresd. identity matrix)

X(0) = [, (0), %, (), .. X (V)] (8)

Monodromy matrix corresponds to the fundamentalrimaxpressed in timé@ . It means to
solve the eq.

X(t) =A@)X(), X(0)=lI. (9)

As a numerical example we can choose the genevaiiga turbine. The model of generator
is depicted in fig. 5. Lafoon's slits are modell®dcracked finite elements. The dependence
of maximal absolute value of the monodromy matigervalue on angular speed of revolu-
tion and depth of slits is depicted in fig. 6. Tlace corresponding to the unit absolute value
of monodromy matrix eigenvalue for all angular spealues presents optimal depth of slits.
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Figure 5. Model of generator Riga
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Figure 6. Dependence of the bands of instabilitthefRiga rotor on the depth of slits

4. Slit depth determination

One of the ways to the slit depth determinationid¢dae understood as an optimization proc-
ess whose objective function will express meastitbeodifference between eigenfrequencies

corresponding to the mode shapes of vibration ia pgrpendicular planes. The objective
function can have form

W(s) =ATAGAX, (10)

where the vectorAi can be written down e.g. in these two ways



Q,, —Qy Im{AM} - Im{AlZ}
AL=|Q, —Q,, | or Ah=|Im{A, }-Im{A,.}|, (11)
Q,, - Qy Im{A, } - Im{A,}
and the weighting matrix is of diagonal for@& = diag{g,, 9,, 9-} . To obtain the eigenvalues
in (11) means to solve eigenproblem eq. (1) T¢0) =1. This optimization approach was

applied retrospectivelly to the five already magegenerators by company BRUSH SEM.
Our results were written down to the last colummheftab. 1.

Table 1. Experimentally and computationally obtdidepths of slits

Rotor Slit depth [mm]
Experiment M. Balda C. Hoschl 1. C. Hoschl 1. New approach

RIGA 104 134,5 114,4 112,6 96,9
BDAX98 95 129,7 109,1 112,6 92,8
DAX7 67,95 99,2 86,6 98,7 63,0
GE9A5 111,5 114,2 86,1 87,8 87,6
GE7A6 82,6 109,9 85,1 97,8 76,7

5. Coclusion

As reader can see our results lie more closelyé¢oekperimentally determined depths then
the results obtained by the application of thrgere@ches used by two Czech notable experts.
In addition these results lie always on the sade sif values. The method of stability assess-
ment was very simplified and accelerated by thelahoeduction. Despite of the fact that the

system matrices are time dependent the reductiooessfully came through by means of

modal matrix calculated in the initial timte= 0.
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