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Summary: The objective of this paper is a study of performance of correlation 
control of recently proposed procedure for sampling from a multivariate popula-
tion within the framework of Monte Carlo simulations (especially Latin Hyper-
cube Sampling). In particular, we study the ability of the method to fulfill the pre-
scribed correlation structure of a random vector for various sample sizes and 
number of marginal variables. Two norms of correlation error are defined, one 
very conservative and related to extreme errors, other related to averages of cor-
relation errors. We study behavior of Pearson correlation coefficient for Gaus-
sian vectors and Spearman rank order coefficient. Theoretical results on per-
formance bounds for both correlation types in the case of desired uncorrelated-
ness are compared to performance of the proposed technique and also to other 
previously developed techniques for correlation control, namely the Cholesky or-
thogonalization as applied by Iman and Conover (1980,1982); and Gram-Schmidt 
orthogonalization used by Owen (1994). 

 

1. Introduction 
The aim of statistical and reliability analyses of any computational problem which can be nu-
merically simulated is mainly the estimation of statistical parameters of response variables 
and/or theoretical failure probability. Pure Monte Carlo simulation cannot be applied to time-
consuming problems as it requires a large number of simulations (repetitive calculation of 
responses). A small number of simulations can be used to gain an acceptable level of accuracy 
for the statistical characteristics of the response using the stratified sampling technique Latin 
Hyper-cube Sampling (LHS) first developed by Conover (1975) and later elaborated mainly 
by McKay at al. (1979) and Iman and Conover (1980). 

It is known that the output response variables of some systems, represented by their re-
sponse functions, are sensitive to changes in correlations among the input variables. There-
fore, it is essential to precisely capture the input correlations in the simulated values. Thus, 
Monte Carlo type simulation approaches require sampling of correlated data from Gaussian 
and frequently also non-Gaussian distributions. Other than the multivariate normal distribu-
tion, few random-vector models are tractable and general, though many multivariate distribu-
tions are well documented (Johnson 1987). 
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In the present paper, the task of correlation control in sampling is treated as a combinato-
rial optimization problem. The technique was developed in (Vořechovský 2002) and (Voře-
chovský and Novák 2002, 2003), and since then it was improved in (Vořechovský 2007, 
Vořechovský and Novák 2009). In the technique, an analogy between the statistical mechan-
ics of large multivariate physical systems and combinatorial optimization is used to develop a 
strategy for the optimal ordering of samples to control the correlation structure. The problem 
of optimal sample ordering is solved by the so-called Simulated Annealing method using a 
Monte Carlo procedure similar to the one developed by Metropolis et al. (1953). 

The technique is designed to minimize differences between the desired (target) correlation 
matrix and actual (estimated) correlation matrix in samples generated by any Monte Carlo 
type method (e.g. Latin Hypercube Sampling – LHS). In this paper, performance studies for 
correlation control are presented and the performance is compared to theoretical results ob-
tained earlier by the author. In this way, the present paper promotes the results obtained in 
(Vořechovský 2006, 2007, 2009a, 2009b). 

As mentioned before, the technique works with arbitrarily sampled data. However, in the 
remainder of the paper, we assume that samples are generated using Latin Hypercube Sam-
pling; in particular its special alternative called LHS-mean by Vořechovský and Novák 
(2009). 

 

 

2. Combinatorial optimization for correlation control 

Sampling correlation (correlation estimation) 

The sampling correlation is assumed to be estimated by one of the standard techniques among 
which the most spread ones are the linear Pearson correlation coefficient, Spearman rank-
order correlation and Kendall’s tau. A detailed information on the computation of these corre-
lations can be found e.g. in (Vořechovský 2007, 2009a, 2009b). The sample is represented by 
a table of dimensions Nvar times Nsim similar to the one at the bottom of Fig. 1. Each row cor-
responds to one variable each of which is represented by a sample (row vector) of size Nsim. 
The related square and symmetric correlation matrices have therefore the order of Nvar. 

The estimated correlation (matrix A) of all pairs of Nvar variables is computed using the 
sample of size Nsim. This actual correlation is compared with the target correlation matrix T 
that is supposed to somehow describe the desired dependency pattern. 

Correlation error measures 

The imposition of the prescribed correlation matrix into a sampling scheme can be understood 
as an optimization problem: we want to minimize the difference between the target correlation 
matrix (e.g. user defined, prescribed) T and the actual correlation matrix A. Let us denote the 
difference matrix (error-matrix) E: 

 = −E T A   (1) 
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To have a scalar measure of the error we introduce a suitable norm of the matrix E. In par-
ticular, a good and conservative measure of the distance between T and A can be the norm 
defined as:  

 
var

max ,1
max i ji j N

Eρ
≤ < ≤

=   (2) 

Even though this norm has a clear meaning and known “units” (correlation) and can be 
used as a good stopping condition in the iterative algorithm, it is not a suitable objective func-
tion to be subjected to direct minimization. The reason is that it represents the maximum dis-
tance from the origin along any correlation difference in the Nc = Nvar(Nvar – 1)/2 dimensional 
space of all correlations represented by the error matrix E, see Vořechovský (2009a). A better 
choice is a norm taking into the account deviations of all correlation coefficients:  

 
( ) ( )

var1 2

rms ,
1 1var var

2
1

vN N

i j
i j

E
N N

ρ
−

= =

=
− ∑ ∑   (3) 

where we used the symmetry of the correlation matrices by summing up the squares of the 
upper triangle off-diagonal terms only. This norm measures the distance of the actual correla-
tion error (a point) from the origin in the space of all Nc different correlations, i.e. the hypote-
nuse multiplied by the first square root appearing in Eq. (3). This norm proved itself to be a 
good objective function for the optimization algorithm described below. Taking the square 
root yields a measure in units of correlation which represents the normalized error per entry 
and is, therefore, suitable for comparison when examples of a different number of variables 
Nvar are involved.  

The norm ρrms has to be minimized, from the point of view of definition of the optimization 
problem; the objective function is ρrms and the design variables are related to the ordering in 
the sampling scheme (Fig. 1). Clearly, in real applications the space of the possible actual 
correlation matrices A is extremely large: consider all ( ) var 1

sim ! NN −  different mutual orderings 
of the sampling table. Clearly, we want to find an efficient near-optimal solution. This is be-
lieved to be achieved by application of the algorithm briefly described next. 

 
 

var \ sim.: 1 2 3 4 5 6

X 1 x1,1 x1,2 x1,3 x1,4 x1,5 x1,6

X 2 x2,2 x2,6 x2,4 x2,1 x2,5 x2,3

1
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two random variables:

swap
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Figure 1. Illustration of a random trial – swap of samples j and k of variable X2. 
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Optimization algorithm for ranks shuffling 

In each step of the combinatorial optimization algorithm, mutation is performed by a transi-
tion called a swap from the parent configuration to the offspring configuration. A swap (or a 
trial) is a small change to the arrangement of sampling table in Fig. 1. It is done by randomly 
interchanging a pair of two values xi,j and xi,k. In other words one needs to randomly generate i 
(select the variable), and a pair j,k (select the pair of realizations to interchange), see Fig. 1. 
One swap may or may not lead to a decrease (improvement) in the norm. Immediately, one 
configuration between the parent and offspring is selected to survive. Simulated Annealing 
algorithm is employed for the selection step. The advantage of this compared to some simple 
evolution strategy is that there is a nonzero probability of accepting an offspring configuration 
with a higher error than its parent (hill climbing). The acceptance rule with decaying probabil-
ity of hill climbing gives us a mechanism for accepting increases in a controlled fashion 
(cooling schedule). It is possible that accepting an increase in the penalty function will reveal 
a new configuration that will avoid a local minimum or at least a bad local minimum in fu-
ture. Details on the algorithm an also details on the implementation can be found in (Voře-
chovský 2002, 2007) and (Vořechovský and Novák 2002, 2003, 2009). 

 

 

3. Theoretical bounds on correlation errors 

Correlation errors for a random ordering 

Obviously, the upper bound on any of the correlation measure must be one (an extreme abso-
lute value of correlation). Let us tighten the bound. We, however, can say that, on average, the 
upper bound on correlation error is the one that occurs when randomly shuffling the ranks 
without any control.  

The described algorithm starts with a random permutation and at the end of the process se-
lects the best available solution so far. Therefore, the upper bound of an average error is the 
one related to a random permutation. It is a well known fact, that in the case of a pair of ran-
dom variables, both Pearson and Spearman correlation coefficient are, in the limit, normally 
distributed with zero mean and standard deviation of (Nsim−1)−1/2, a formula obtained by  Stu-
dent and incorporated in Pearson’s (1907) memoir, see (Hotelling and Pabst 1936).   

Vořechovský (2009a) has shown that the error ρrms for random ordering and in multidi-
mensional setting follows (in the limit of Nsim ) Chi distribution with the mean value of → ∞

 
( )var

rms
sim 1

r N
N

μμ =
−

  (4) 

where the function  quickly converges to unity with growing Nvar and thus the 
mean error is almost independent of the dimension Nvar. The limiting rates of the average error 
and its standard deviation are:  

( varr Nμ )

N 
sim sim

1/2 1/2 1
rms sim rms sim varand

N N
N Nμ σ− − −

→∞ →∞
= =   (5) 

Details on the distribution of ρrms  can be found in (Vořechovský 2009a). 
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Regarding the distribution of the second norm, ρmax, we deal with extremes of (approxi-
mately independent and) uniformly distributed Gaussian random variables and it has been 
shown (Vořechovský 2009a) that both, the mean value and standard deviation of the random 
error ρmax are asymptotically proportional to . The decrease of the standard deviation of 
a random correlation is, however, slower than in the case of ρrms. Also, the average error 
slowly grows with an increasing dimension Nvar. We can say that ρmax is more conservative 
error measure compared to ρrms. The derivation of the error distribution and formulas for the 
error statistics can be found in (Vořechovský 2009a). 

1/2
simN −

We have shown the intuitively acceptable result that zero uncorrelatedness is the most fre-
quent pattern among all possible random orderings.   In many applications the sample size is 
not restricted and the analysis can be performed with extremely large Nsim.  In such situations, 
if independence among input variables is requested, the analysis can be performed with a 
sample on which no special algorithm for dependence/correlation control is applied. 

To conclude, we are sure that the proposed combinatorial algorithm performs such that any 
of the errors of the decays (on average) at the rate . Such an error might be satisfactory 
for very large sample sizes and therefore the correlation could be left random when requesting 
uncorrelatedness. However, in the case of a small sample size, one should use a suitable me-
thod for correlation control to speed up the convergence towards the zero error. 

1/2
simN −

Lower bounds on correlation errors 

The best solution that can be achieved is when the actual correlation matrix matches the target 
one, i.e. both correlation norms are zero.  This, however, cannot be always achieved.  

When uncorrelatedness between two random variables is requested, it can be shown 
(Vořechovský 2009a) by a simple pairing argument that in the case of Spearman correlation, 
the smallest error is  when the sample size is3

sim6N −
sim 2 4N l= + , where l is a nonnegative in-

teger (the exact minimal error is ( ) 11 2
sim sim6N N 1

−− −  and comes from the analysis of simplified 
formula for sample Spearman correlation)  In other words, the worst convergence (of the 
peaks) of the smallest correlation error is polynomial (a power law with exponent of −3), and 
the associated error graph in a double logarithmic plot is a decreasing straight line of the same 
slope. For other sample sizes, the correlation error can be zero. 

In the case of Pearson uncorrelatedness between two Gaussian random variables sampled 
via LHS, the minimum correlation error can be zero when sim 4N l=  or . Other-
wise, the smallest error is of order 

sim 4 1N l= +

( )1
simN−Γ , see a detailed analysis by Vořechovský 

(2009a). 

When a general correlation between two variables is requested, the Spearman correlation is 
somewhat more difficult to be fulfilled compared to Pearson correlation. The reason is that 
the number of attainable correlations is much greater in the case of Pearson correlation (it 
operates with real numbers while Spearman correlation works only with integer ranks). 

What deserves attention is the number no of so-called optimal solutions, i.e. the number of 
different possible mutual orderings for a given sample size Nsim and dimension Nvar that yields 
perfect uncorrelatedness. It has been shown (Vořechovský 2009a) that the number of or-
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thogonal Spearman so

independent and identically normally distributed, leads to a number of opti-
mal solutions:  

 

lutions between two random variables is approximately: 
( )sim 2

sim sim12 / expN
on N N−≈ , which highlights the rapid increase of no with Nsim. Extension of 

the argumentation into higher dimensions (Vořechovský 2009a) with the assumption that all 
correlations are 

( )
var

var

var

21 5/2
, sim sim

12!
2π⎝ ⎠

For a fi var, the first factor grows faster with Nsim than the second factor decreases and 
therefore 

var,o Nn  grows with Nsim. The main result is the implication that with increasing sam-
ple size Nsim the number of optimal solution explodes, the growth is even faster for greater 
problem dimension Nvar. Of course, a combination of a very small Nsim with large Nvar may 
results in nonexistence of an optimal solution. Analysis of the leading terms in Eq. (6)

N

N
o Nn N N

⎛ ⎞
⎜ ⎟
⎝ ⎠− −⎛ ⎞≈ ⎜ ⎟   (6) 

xed N

 and 
postula

 the sense of zero Pear-
son correlation, analysis in (Vořechovský 2009a) yields the number  

ting that 
var, 1o Nn >  yields a condition on the minimum sample size: Nsim > 5 Nvar /4. 

When orthogonality between two random variables is requested in

( )
sim 1
2 sim sim2 / exp / 2on N Nπ≈   (7) 

Comparison of the two results for optimal solution of a pair of variables immediately 
shows that the number of Spearman orthogonal solutions is approximately equal to a square 
of Pearson solutions divided by Nsim. It is seen that in the Spearman case the number no is 
greater compared number of Pearson orthogonal vectors at the same sample size – orthogo-
nality with real numbers is a stricter requirement than Spearman uncorrelatedness obtained 
with integer ran

N −

ks. When the dimension Nvar gets increased, orthogonal Pearson vectors occur 
only sparsely.  

 
Figure 2. Typical performance plot obtained for Nvar = 16. Simulated data (averages are denoted by symbols and 
a solid line, minima and maxima by thin solid lines) are compared to theoretical bounds and results of other 
techniques. 
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Correlation error when Nsim ≤  Nvar 

As will be shown later, the performance of the proposed algorithm drastically changes when, 
at a given problem dimension Nvar, the sample size exceeds it, i.e. when Nvar > Nsim.  There-
fore, it is very important to study the best possible performance for the crossover sample size, 
i.e. when Nsim = Nvar.  

Every estimated correlation matrix A must be positive semidefinite (PSD), i.e. all its ei-
genvalues are real and nonnegative. It can be shown that when N = Nsim = Nvar the correlation 
matrix A is singular (rank deficient) and its rank (number of nonzero eigenvalues) is N − 1. 
The smallest eigenvalue is zero and the determinant of A – computed as the product of all 
eigenvalues – is zero, too. It is also known that the sum of the eigenvalues of A equals its 
trace, which is the sum of the diagonal elements: Nvar. 

A realization of any correlation matrix A of order Nvar can be viewed as a point in Nc di-
mensional space of all Nc different correlation coefficients.  The volume of the space of all 
symmetric matrices with off diagonal entries varying from –1 to +1 is V = . It is known 
that the set of all positive definite matrices is a solid body in that space occupying a region in 
the vicinity of the origin (a point corresponding to mutual uncorrelatedness). We seek such a 
realization of A (a point in the Nc-dimensional space) that is closest to the origin yet repre-
sents a singular matrix and therefore remains on the boundary between positive definite ma-
trices and negative definite (invalid) matrices. Mathematical derivation presented by Voře-
chovský (2009a), based on spectral representation of A, yields the lower bound on both ρrms 

and ρmax:  

c2N

 
var sim var sim

rms max
1 1,

1 1N N N NN N
ρ ρ

= =
≥ ≥

− −
  (8) 

These bounds are usually impossible to match. The number of attainable correlations is 
very limited for such a low number of simulations and in dimensions Nvar>3 there are no cor-
relation matrices with off diagonal elements equal in their absolute values.  

The lower bound on correlation errors for cases when Nvar > Nsim might have many applica-
tions. For example when simulating only a small number of random fields using series expan-
sion methods, see e.g. Vořechovský (2008), the sample size might be much smaller than the 
number of variables needed for the expansion. 

Recall that whenever the sample size is smaller than the number of random variables the 
correlation matrix A is singular. The matrix rank can then be computed as:  

 when (Nsim  Nvar), which is, at the same time, the number of non-zero 
eigenvalues among which the matrix order Nvar must be distributed. The eigenvalues are uni-
formly distributed, i.e. the r nonzero eigenvalues are repeated — they equal to Nvar/( Nvar − r). 
Analysis if the case of rank=1 yields the best error of one. We conclude by stating that the 
smallest possible error decreases from one to 1/(Nsim–1), and the lower bound reads (full deri-
vation in Vořechovský 2009):  

( ) simrank 1r N= =Α −

)

≤

 ( )
( )(var sim

var sim
rms

var sim

1
1 1N N

N N
N N

ρ
≥

− −
≥

− −
  (9) 

Graph of this equation is plotted in Fig. 2; see the curved line within the grey area. 
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4. Results of performance tests 

General remarks 

From here on, we present results of large numerical studies of performance of the technique 
proposed by (Vořechovský 2002, 2007) and (Vořechovský and Novák 2002, 2003, 2009). We 
compare the results with both the theoretical bounds presented above and performance of the 
two other known algorithms. In particular the ability to fulfill the desired correlation structure 
while keeping the sampled marginal distributions intact is measured for both (i) uncorrelated 
and (ii) strongly correlated cases. We have conducted estimates of statistics of errors (1) ρrms 
and (2) ρmax for a vast number of combinations of Nsim and Nvar. These tests were carried out 
for both (a) Spearman and (b) Pearson correlation coefficient (in the latter case the margins 
were Gaussian and LHS-sampled).  

Both errors ρrms and ρmax can be viewed as random variables because they are results of 
stochastic optimization that depends on random starting conditions – the process of correla-
tion control depends on the seed of computer (pseudo) random number generator. Therefore, 
in order to deliver statistically significant estimations on the random performance we con-
ducted a large number of runs with the same input settings. The number of runs is not a con-
stant – for large sample sizes the variability of results is small compared to a small sample 
size, where we used 200 runs. In each run we used the same starting conditions except for the 
seed of random number generator. The recorded statistics are the mean and standard deviation 
and the recorded minimum and maximum. In this paper, the performance is always presented 
as the correlation error ρrms or ρmax versus the sample size Nsim in a logarithmic plot. The rea-
son is that the graphs contain plots of power laws that appear as straight lines.  

The algorithm is compared to two previously developed and well known techniques for 
correlation control: Owen’s (1994) method based on Gram-Schmidt orthogonalization proce-
dure for generation of uncorrelated vectors and (b) Iman and Conover’s (1980) method based 
on Cholesky decomposition of correlation matrix. Comparison is performed only for ρrms 
which is somewhat more practical error measure. Average performance of Owen’s method is 
denoted as RGS

rmsρ  and the average performance of Iman and Conover’s method is RC
rmsρ . Our 

performance is denoted as SA
rmsρ . 

Tests with uncorrelated variables 

We start with performance graphs for target uncorrelatedness, i.e the target correlation T=I 
(unit matrix). This is the most frequently used case in Monte Carlo simulation approaches. 

Before we present a plot of correlation performance for all tested Nvar in a single plot, we 
show and comment a typical performance plot together with all theoretically derived bounds 
and comparisons to previously developed algorithms in Fig. 2. We have selected the dimen-
sion of the problem to be Nvar = 16 variables and performed simulations for Nsim=2, …, 1000. 

First of all, the average performance has two distinct branches: (i) graph for sim varN N≤  
that appear nonlinear in the plot and (ii) second branch which is approximately a power law 
when Nsim > Nvar. In the former case, the correlation matrices are singular (at least one zero 
eigenvalue). There is a clear boundary between the two regimes that corresponds to Nsim = 
Nvar  (see the line denoted as “best singular matrix” in Fig. 2), compare with Eq. (8):  
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 ( )SA 1
rms sim sim1/ 1N Nρ −= − ≈   (10) 

Results of our SA algorithm for the first branch ( sim varN N≤ ) has no variability, i.e. the so-
lution was identically good for any seed setting (run) and it almost perfectly follows Eq. (9). 
The error SA

rmsρ  never exceeds the upper bound given by a random ordering correlation (Eqs. 4 
and 5), i.e.  (see the line denoted as “random correlation”). We can say that whenever 

, the 

1/2
sim
−

SA
rms

N≈

arNsim vN ≤ ρ  error stays between the two power laws, i.e. within the shaded area in 
Fig. 2. This holds for an arbitrary Nvar, not only sixteen.  The situation for the other norm SA

maxρ , 
is almost identical. The only difference is that the upper bound is somewhat greater (but 
known and never violated, see (Vořechovský 2009a and 2009b)  for details) and the lower 
bound is somewhat higher, too. 

Results of our SA algorithm for the second branch (Nsim > Nvar) are very interesting. First 
of all, when Nsim = Nvar + 1, the error SA

rmsρ  drastically decreases (from the one for Nsim = Nvar) 
because the correlation matrix becomes positive definite, see the sudden jump when Nsim 
changes from 16 to 17 in Fig. 2 (jump from the solid circle to the solid box). However, the 
error starts to have a certain scatter showing that the algorithm stops with differently good 
solutions depending on the seed settings. It will be shown that the average error for Nsim = Nvar 
+ 1 is almost exactly a power law as follows (see the thick dash-dot line):  

 
( )sim var

SA 1.5
rms sim3/2

1 sim

1
1N N

N
N

ρ −

= +
= ≈

−
  (11) 

As the sample size Nsim increases (for a given Nvar), the average error appears as a straight 
line with an universal slope of almost –2.5 and therefore the average error reaches almost ex-
actly (dashed line):  

 
( )sim var

SA 2.5
rms var var sim5/2

sim

1
1N N

N N
N

ρ −

>
= ≈

−
N   (12) 

One can easily check that by substituting Nsim = Nvar + 1 into Eq. (12) the formula in Eq. 
(11) gets recovered. In fact the slope of –2.5 (discussed by Vořechovský 2009a and 2009b) is 
not exactly reached for the whole tested spectrum of Nsim. Numerical simulations with varied 
Ntrials as (a parameter in the SA algorithm) suggest that the optimal power of average conver-
gence (–2.5) is reached only for a sufficiently large number of iterations Ntrials. As the sample 
size increases, the demands on Ntrials grow. For a constant Ntrials that does not reflect the “size” 
of the problem (number of possible rank combinations) the power changes from –2.5 to ap-
proximately –2.2, which is a somewhat worse performance (see the triangle at bottom right in 
Figs. 2 and 3).  

Let us compare the performance of our SA algorithm with Owen’s RGS
rmsρ  and Iman and 

Conover’s RC
rmsρ . For simplicity, the comparison is made only for average errors and only for 

the particular situation of Nsim = Nvar + 1. In fact, we are ready to compare the three dash-dot 
lines in Fig. 2. 

As reported by Owen (1994), the average errors obtained by ordinary regressions of data 
obtained by the known algorithms give:  
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( )
( )

RC 0.57
rms sim

RGS 1.45
rms sim

0.42 Iman and Conover

1.35 Owen

N

N

ρ

ρ

−

−

≈ +

≈ +
  (13) 

One can immediately see that Iman and Conover’s algorithm has much worse performance 
because the slope (–0.57) is significantly milder than Owen’s –1.45. Owen’s algorithm has 
almost the same slope as ours –1.5 (see Eq. 11) but the plot is somewhat shifted towards 35% 
grater errors (see the constant of 1.35 and compare the lines in Fig. 2). 

Unfortunately, when Owen’s algorithm is used for Nsim > Nvar + 1, the convergence rate 
decreases (!) to  which might seem to be strange.  The implication of this is that 
adding more simulations to the problem makes the situation worse. In other words, it is better 
to generate correlations for a greater Nvar than needed and remove the unnecessary variables 
afterwards. Owen (1994) gives an explanation to this fact. Note that in our SA case, increase 
of the sample size for a given Nvar results in a drastic improvement of the correlation error 
(Eq. 12) which is logical: a greater sample size allows for many more combinations of ranks 
to select a sub-optimal ordering from. 

RGS 1
rms simNρ −∝

Regarding a random scatter of our performance results: as mentioned before, we only have 
some scatter when Nsim > Nvar (second branch). It can be seen from Fig. 3 that for a constant 
Nvar, the scatter band is equally wide for various sample sizes. This suggests that the coeffi-
cient of variation of SA

rmsρ  is a constant, independent of Nsim. Indeed, the standard deviation of 
SA
rmsρ  is almost exactly equal to  (negligible differences are found in regressions of the 

data). Therefore, the coefficient of variation is inversely proportional to the number of vari-
ables:  

5/2
simN −

 
sim var

5/2
SA sim
rms 5/2

var sim var

1cov
N N

N
N N N

ρ
−

−
>

⎡ ⎤ ≈ =⎣ ⎦   (14) 

This corresponds to the decay of scatter band width for growing Nvar as seen in Fig. 3.  

Note that performance graphs for Spearman and Pearson correlations are almost identical 
(differences are found only for very small Nvar, a fact thoroughly explained in Vořechovský 
2009a). 

Also, we can say that the overall shape of convergence graphs looks similar for SA
maxρ  and 

SA
rmsρ  (the former norm is more conservative and the curves are shifted upwards). Detailed 

analyses of the differences between the two norms can be found in (Vořechovský 2009a and 
2009b). 

Tests with correlated variables 

In order to study the algorithm performance for correlated variables, we have to select some 
correlation matrix pattern because there is no unique one (as opposed to the uncorrelatedness). 
The target correlation matrix was constructed (i) to cover a spectrum of target correlation co-
efficients from interval , 1,1i jT ∈ −  and (ii) to be surely positive definite. In particular, each 
entry of the target correlation matrix T was a product of two numbers associated with ith and 
jth variable:  
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 , v, , 1, ,i j i jT T T i j N ar= = …   (15) 

where  (uniform distribution over interval (–1;1)). Such a separable prod-
uct correlation structure ensures the symmetry and positive definiteness of T. The patterns of 
correlation matrices for arbitrary Nvar look similar. The minimum off-diagonal correlation 
coefficient in T reads T  and the maximum one is 

( ) var2 1 /iT i N= − −

var1,N

1

− Nvar2 / 1N= 1,2 var1 2 /T = − . There are 
always Nvar –1 pairs of variables with zero target correlation coefficients in T. In Fig. 3bottom 
left, there is an image of the absolute values of correlation matrix T in the bottom left corner 
and the figure next to it shows the distribution of correlations Ti,j ranging from –1 to 1. 

Generally, the correlated test was a tough task for the algorithm, as compared to the uncor-
related case. The results plotted in the bottom line can hardly be distinguished from the result 
in top of the figure for small problems. For large sample sizes, however, the number of trials 
must be large enough to deliver correlation errors as good as in the uncorrelated case. The 
reason is that uncorrelatedness is the most frequent pattern, while “higher correlatedness” can 
be matched by a smaller number of mutual rankings of samples. 

 
Figure 3. Results of performance study. Top: Uncorrelated variables; Bottom: Separable correlation. Left: ρrms; 
Right: ρmax. Bottom left: Image of correlation matrix (absolute values of Ti,j and distribution of correlation coef-
ficients in T for the case of studied separable correlation). 
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Discussion and remarks 

In most cases the solution found by the algorithm is far too good in terms of the correlation 
error. The computational time gets very short when stopping condition in a form of the error 
tolerance is set. 

Clearly, the algorithm is designed to seek configurations with small values of ρrms (and 
consequently ρmax). However, it might be questioned what solution it yields in terms of the 
dependence pattern of the desired random vector. We know that the information provided to 
the algorithm (marginals and correlation structure) does not suffice for constructing a unique 
joint probability density function (jpdf). This fact represents a possible danger: the generated 
samples may represent some unwanted jpdf. This is discussed by Vořechovský (2009b). Re-
garding the solutions with small errors ρmax and ρrms: it must be questioned whether such a re-
quirement is a good one. Especially in the case of uncorrelated variables there exists a risk of 
obtaining a sample with unwanted and strange patterns of dependence. A simple remedy is 
suggested via enhancing the cost function with either canonical correlations or copulas (or at 
least: combination of different kinds of correlation measures such as Pearson and Spearman). 
Such an extension is simple Vořechovský (2009b). In this way, the algorithm shows the non-
uniqueness of some of the reliability approaches based on Rosenblat (1952) transformation 
(see e.g. Hohenbichler and Rackwitz 1981) or Nataf (1962) transformation (promoted by Liu 
and Kiureghian 1986) known also as Li-Hammond (1975) or NORTA transformation. 

 

 

5. Conclusion 
The paper promotes a number of innovative results on correlation bounds based on combina-
torial analysis of the problem, linear algebra and theory of probability. These bounds are 
compared to results of suggested algorithm for correlation control based on stochastic combi-
natorial optimization.  

The results support a conclusion that the proposed algorithm operates with results very 
close to the theoretical lower bounds on performance. The algorithm is considerably more 
efficient than the other two well-known algorithms, i.e. Iman and Conover’s (1980) Cholesky 
decomposition and Owen’s (1994) Gram-Schmidt orthogonalization.  
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