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ON SIMULATION OF CROSS CORRELATED RANDOM FIELDS
USING SERIES EXPANSION METHODS

M. Vofechovsky !

Summary: A practical framework for generating cross correlated feeldith a
specified marginal distribution function, an autocorrédat function and cross cor-
relation coefficients is presented in the paper. The apgraates on well known
series expansion methods for simulation of a Gaussian narfild. The proposed
method requires all cross correlated fields over the domashiare an identical au-
tocorrelation function and the cross correlation strualretween each pair of sim-
ulated fields to be simply defined by a cross correlation aoeffi. Such relations
result in specific properties of eigenvectors of covarianmrices of discretized
field over the domain. These properties are used to decontpessigenproblem
which must normally be solved in computing the series exparsto two smaller
eigenproblems. Such a decomposition represents a sigmifieduction of compu-
tational effort.

Non-Gaussian components of a multivariate random field aspgsed to be sim-
ulated via memoryless transformation of underlying Gaarssandom fields for
which the Nataf model is employed to modify the correlatitvacsure. In this
method, the autocorrelation structure of each field is fleffilexactly while the
cross correlation is only approximated. The associatedmsrican be computed
before performing simulations and it is shown that the esloappen especially in
the cross correlation between distant points and that theyreegligibly small in
practical situations.

1. Introduction

The random nature of many features of physical events islwideognized both in industry
and by researchers. The randomness of a gust wind, randoatusal features of materials,
random fluctuations in temperature, humidity, and othelirenmental factors, all make the
characterization provided by deterministic models of namits less satisfactory with respect
to predictive capabilities. However, the entire problemuatertainty and reliability can be
addressed in a mathematically precise way and the randoraatbastics of nature can be
addressed by computational models. For example, spatiadifuating values of material pa-
rameters can be conveniently represented by means of rafieloi: (e.g. strength, modulus
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of elasticity, fracture energy, etc). Except for the nariass of problems that can be solved
analytically, the solution to the variety of complex enggriag problems involving uncertainty
regarding mechanical properties and/or the excitatioaeg #ne subjected to must be found by
means of simulation. The only currently available universathod for accurate solution of
such stochastic mechanics problems is the Monte Carlo iigain

One of the most important stages of the Monte Carlo type sitianr technique as applied
to systems with random properties (or systems subjecteahiom excitations) is the genera-
tion of sample realizations of these random properties. gdrerated sample functions must
accurately describe the probabilistic characteristidh®forresponding stochastic processes or
fields. Moreover, since the analyzed problems are usuathpecationally intensive (e.g. large
scale nonlinear finite element computations), an analyst select a simulation technique giv-
ing stable solutions with a small number of samples.

Simulation of non-Gaussian processes is mostly based oromyss transforms of the stan-
dard Gaussian processes. These processes are known Egitnamsocesses Grigoriu (1995).
The central problem is to determine the corresponding Gaussvariance matrix (or equiva-
lently, the Gaussian power spectral density function) yietls the target non-Gaussian covari-
ance matrix after the memoryless transformation. Yamaaa#li Shinozuka (1988) proposed
an iterative algorithm for generating samples of non-Gianssandom fields with prescribed
spectral density and prescribed marginal distributiorcfiom based on iterative updating of the
power spectral density. Recently, Sakamoto and Ghanen2)20@ Puig et al. (2002) utilized
Hermite polynomial chaos method. In their method, the nausSian processes are simulated
by expanding the non-Gaussian distribution using Hernotgrpmials with the standard Gaus-
sian variable as argument. The correlation structure isdposed according to the KLE of the
underlying Gaussian process. The accuracy of this repiasam was studied by Field and
Grigoriu (2004) who pointed out some limitations of the aygmh. Grigoriu (2006) criticize
the algorithm for its computational intensity and questiole accuracy. Phoon et al. (2005)
recently proposed simulation of non-Gaussian processeKatihunen-Loéve expansion with
uncorrelated non-Gaussian coefficients of zero mean artdvanance. The key feature of
their technique is that the distribution of the random caadfits (random variables) is updated
iteratively.

In the present paper (which is a shortened version of therggpeofechovsky (2008)) the
well known orthogonal transformation of covariance maisixxhosen for representation of a
Gaussian random field, and based on this method a simplesexteto the simulation of the
target type of multivariate stochastic fields is shown. Agdrief review of the method in the
context of univariate random fields (Sec. 2.) we proceed ascorrelated Gaussian vector
random fields (Sec. 3.) and the proposed method. Sec. 4. sfmwthe presented approach
can be extended for simulation of non-Gaussian vector rarfeelds via transformations of an
underlying Gaussian random field. Numerical examples amadheles of applications of the
method have been dropped due to space limitations, theyecéoubd in Vofechovsky (2008).

2. Series expansion methods for the simulation of a random fig

Suppose that the spatial variability of a random paramstédescribed by the Gaussian ran-
dom field H (), wherex € 2 is a continuous parameter (vector coordinate), @nglan open
set of R4™ describing the system geometry. The autocorrelation fonc¢ty ; (x, y) describes
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the autocorrelation structure of a random field, i.e., tieeshatial variability. It is a function of
some norm of two pointg,y € Q : ||z, y|| = {||z1, 21, - -, [|Zdim, Yaim|| }. If the covariance
function depends on distance alone, the function is sai@ isdiropic.

We will use the orthogonal transformation of the covarianrix (sometimes called also
the proper orthogonal transformation). The method is Wwetiwn in the simulation of univari-
ate random fields and will provide a good basis for illustnatof the proposed methodology
for the simulation of multivariate random fields. The im@mtt point is that the target random
functions can be suitably simulated by series expansiohadstexpansion using a finite num-
ber deterministic functions and random variables — coeffis. By means of these random
variablesg; (), the approximated random field can be expressed as a finitenatiom (series

expansion):
Nvar

Ha(0) = 3 &(0) A7 [23]) M

Where)\;1 and o are the solutions of the eigenvalue probleh;, DY = A\ @Y, Yy, is
the covariance matrix of th& (nodal) field valuesi. N,,, < N represents the truncation in
the above discrete spectral representation of the fieldlgranvector). The method is strongly
related to the Karhunen-Loeve expansion (KLE) method amdbe extended to deliver contin-
uous representation of a field by Kriging (the method is theowkn as the Expansion optimal
linear estimation — EOLE).

3. Cross correlated Gaussian random fields

It is usual that more than one random property governs thieigeo of a system. Consider
for instance Young’s modulus, Poisson’s ratio or strengtmechanical problems, etc. In a
probabilistic concept, all these quantities can be modeyedndom fields.

The present paper deals with cases when all fields simul&erdaoregiont) share an iden-
tical autocorrelation function ove®, and the cross correlation structure between each pair of
simulated fields is simply defined by a cross correlationfamweht. Such an assumption en-
ables one to perform the modal transformation in two “smstiéps, not in one “big” step, as
proposed by Yamazaki and Shinozuka (1990). The advantagsignificant reduction in the
dimension of the eigenvalue problem considering the faait e modal decomposition of the
given autocorrelation function (KLE) or matrix (EOLE) ism® only once. An illustration of
the algorithms of both methods and their comparison withtaildel description follow.

The key idea of the proposed method is that all cross coelaelds (components) are
expanded using a certain of eigenfunctions/vectors, ®is#ts of random variables used for
the expansion of each field are cross correlated. In othedsyeach field is expanded using a
set of independent random variables, but these sets mustigated with respect to the cross
correlation matrix among all expanded random fields.

3.1. The proposed method for simulation of Gaussian cross-cdated random fields

In this section, we present some definitions needed for thielggm formulation, notations and
basic facts used throughout the paper. The most importapepties of defined items are stated.

Cross-correlation matrix of random fields C is a square symmetric positive definite matrix
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of order Ny with elements”*’ € (—1;1) for: # j andC* = 1 for i = j. Matrix C is a cross-
correlation matrix and defines the correlation structurergmV; random fields.

The cross correlation matr& has Ny real, positive eigenvalue/sjc, j=1..., Np asso-

ciated with N orthonormal eigenvector«bjc, j = 1,..., Np. After ordering them so that

AP > 2§ > ... > \§, the eigenvector matrix reads:

C C C C
¢ B¢ .. @, ... S,
C C C C
11 12 - INp, - LNp
C C C C
¢2,1 ¢2,2 e ¢27NF,7‘ e ¢27NF
. . 2)
C C C C
¢NF71 ¢NF72 Tt ¢NF7NF,7- Tt ¢NF7NF

and the associated eigenvalues
C C C C
oF oF ... @f ... @F,

AC=diag (A A§ .. NG, . AF, )

Eachj-th eigenvecto® ;€ is normalized to have an Euclidean length of 1, therefdr€| " $C =
I, in whichT is an identity matrix. The spectral decomposition of catieh matrixC reads:
C®C = ®CAC. Let us denoteb® = (®F &F) andA® = (AF Af), where®f =
<<I>1C o5 ... <I>JCVF> is the(Ny x Np,.) matrix andAS = diag ()\10, - )\ﬁm> is the(Np,. x
Np,) diagonal matrix. Partitioning of the matrices can be uséet lim the reduction of com-
putational effort for the simulation of random fields. It da@ shown that a large amount of
computer memory can be saved at a given level of accuracyeitisespb¢ instead of full®©
(with associated\’s). The idea is that the largest eigenvalues and their casreipg eigenvec-
tors dominate the foregoing transformation, so the secamtqf the eigenvalues/vectors can
be neglected and trepproximate spectral representation of matéixcan be obtained:

¢ = AL [8°]" 3)

It can be shown that for the simulation of cross correlatedtsistic fields by the methods
described above one needs to simulate a vector of crosdatedteandom variables for the
expansion. These random variables haveltoek cross correlation matrix D of random
variables. Let D be a squared symmetric matrix of ordéYr N,..) assembled in this way:
matrix D consists of (Vi x Nr) blocks (squared matrice€y+ I, wherel is the unit matrix of
orderN,,., andC*’ are elements of the cross-correlation ma@ixlefined previously.

Hl H2 H3 “e HNF
H, I 2?21 oW1 ... CWNrI
H, : 1 C?31 ... C*Nr1
D= H, 1 NG |
: : o sym. : :
Hao\ooo o

D is a correlation matrix having nonzero elements on subethiaty of partial square blocks.
The fact that each square block matrix on the diagondDa6 the (N.. X Ny, ) unit ma-
trix can be simply interpreted: random variables neededh®expansion of one random field
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H;, 1 = 1... N are uncorrelated (and also independent since we will wotk @iaussian
random variables). The off-diagonal square blocks (diajomatrices) represent cross cor-
relation between each two sets of random variables usedxfnsion of the fieldgZ; and
H;, i1# 7, 1,5=1,...,Np. The key property for the proposed method is the spectrglgsty
of the correlation matridD. Cross correlation matrild hasNy N, real, positive eigenvalues
)\}3, j=1,...,(Nr Ny, ) associated with orthogonal eigenvectors. Obviously madrihas
the same eigenvalues as matixbut these aréV,,.-multiple. Similarly the eigenvectors @
are associated with the eigenvectorgbf The space described & is enriched so that the
dimension isV,,,-times higher, but the components of the orthogonal eigetove®€ remain.

After ordering the eigenvalues so thdt > AP > --- > AR , one can assemble the
eigenvectors/eigenvalue matrices using a block-matrilk aguared block submatrice®P =

P ... @R, ... @R,
L S R S
gbglI gng I ... gng 1
. N :F @
¢JC\:7F,1I Tt ¢JC\:[F,NF,’I‘I e quc\:[F,NFI
and the eigenvalue matrices corresponding to vector blpBks ..., % ): AP =
®P ... R, ... @},
—diag (AP1 ... X, T .. AGT) (5)

wherel is the unit matrix of ordetV,,.. MatricesC andD are positive definite. Similarly to
Eq. (3) the second part of the eigenvalues/vectors can Beated and thepproximate spectral
representation of (cross) correlation matidiX can be obtained as:

D = ®P AP [@P]" (6)

where the matrix@P, again, contains only the respective eigenvectors tatheeigenvalues.

It might be important to know how the correlation matrix of al- fields, each discretized
into the same set d¥ points(xy, ..., xx), looks like. We call ifull-block correlation matrix
F. LetF be a squared symmetric matrix of ordér N assembled as follows. Matrik consists
of Nr x Ny blocks (squared matrice$);/, which are correlation matrices of ordar. Each
submatrixFi), = FJi =

L1 Ce I Ce LN
x [ Fy1o..0 FYo0 Py
x, | By Bl By (7)
ey \ Fyy 0 By Fyly
is symmetric and the general entfy] = F}/ = Corr [H; (x;,) , H; (x;)] has the meaning of
correlation between two field’'s,(j) nodal values at pointg,, x; (k,l = 1,..., N). Matrix F
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can be obtained using the autocorrelation maktjyy, = F’ and using the cross-correlation
matrix C among random fields (vector$},, ..., Hy, simply by multiplying the autocorre-
lation by the cross correlationF]j:{ = (" F,. Matrix F can be written using the squared
(N x N) blocksF% = C*% F,, as:F =

H] H2 P HNF
H, Fou OCY2Fu ... OYWFF,
. 2,Np
.Hz Fuu B C . Fuu )
. . sym. . .
Hy,\ ... ... ... Fu

This illustrates the simple cross correlation relatiopstietween the vector field$;, H; (sin-
gle correlation coefficient§’7). Matrix F is the target cross-correlation matrix of discretized
random fields (random vector$],,..., Hy,, each discretized into the same set of points
Z;, (Z = 1, ey N)

It is not difficult to show that if the correlation matriR consists of blocks (autocorrelation
matricesF,,, each multiplied by a cross correlation coeffici€rit’), the eigenvector matrix
denoted®" can be assembled as a block-matrix with block submateices . ., ®% : ®F =

of oy oY
L R . L e
S v v
2,1. ¢2,N1T,,« (/bQ,N.F )
C @ ¢S @ ¢S, B
andA¥ =
S T
diag (APA® ... A§, AT L. G AY) (10)

where A" is the (reduced) eigenvalue matrix Bfof order N,,, and\€ (i = 1,..., Np) are
the eigenvalues of cross correlation mat€ix Note that the eigenvalues’ are not sorted
automatically even if the eigenvalues of botlt and A€ are sorted. The partitioning @b¥
andAF in the case that only the reduced number of eigenmadesof matrix C are available
is obvious.

Block sample matrix xP. Let xP be a(N,.. Nr)-dimensional jointly normally distributed
random vector with correlation matriv. The vector consists oV blocks. Each block (sub-
vector)x?, j=1,..., Nrrepresents a Gaussian random vector with standard Gaussian
independent (and therefore also non-correlated) randoiaiblas (marginals) while the vectors
x?, x; are cross correlated.

For a given number of realizationg;,, the vectory® is represented by aiiV,.. Nr) X Ngim
random matrix. Each of th&;,, columns is one realization of a Gaussian random vector. The
random vectoi® is partitioned intaV; vectors each with the dimension,,,:

I R X N

Simulation of the matrix® is the most important step in the method. The mabiis targeted
in simulation ofx? as the correlation matrix. The key idea of the method is tiization of
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spectral decomposition of correlation matfixas this decomposition is very easy to perform
(Eq. 4). Therefore, the orthogonal transformation of datren matrix will be used. The uti-
lization of the equivalence with prescribed correlatiortnmaC among fields has a significant
computational impact: instead of solving the,, x Ny eigenvalue problem dD, one needs to
solve theN - eigenvalue problem of prescribed correlation ma@ixin cases when the number
of random variables utilized in the expansion of one randad s large (thousands), the re-
duction is significant. By partitioning the matri® into NV,,,-dimensional blocks, one obtains
an independent standard Gaussian random vector for théasiamuof each of theV, random
fields.

Having Eq. (4) for the correlation matrl? at hand the simulation of the block sample matrix
xP is straightforward (orthogonal transformation of the etation matrix):

1/2
where¢ = {&, ¢ = 1,..., Nr x N, } forms a vector of independent standard Gaussian
random variables. Of course, the (sparse) matrieBsand AP do not need to be assembled

and stored in computer memory. They can be used in the form afgorithm, and only the
eigen-matrice®® and A€ must be solved (or at least their dominating pdfsandAF).

Yamazaki nad Shinozuka 1990 proposed the universal sironlat discretized multivariate
stochastic fields by one orthogonal transformation of (kj@ovariance matri¥. The modal
matrix of matrixF is then used for the transformation of random veétoomposed ofV x Ny
independent Gaussian random variables. The main differsom the method proposed here
is that they need to solve an eigenvalue problem of matrikat has a large ordéV x Np)
while in this paper the problem is decomposed into two séparedal solutions, namely (i)
the autocovariance structure (ordérin EOLE; a reduced number &f,,. eigenmodes must be
solved) and (ii) the cross-correlation matrix of ord€f (N, modes). A simple illustration
with a comparison of the approaches is given in Fig. 1. Thediglustrates a) the expansion of
a univariate random field using the random ve&a@nd the eigenvalue matriX with associ-
ated eigenfunctions [eigenvectors] in KLE [EOLE], b) thmslation procedure employing one
“huge” orthogonal transformation of the correlation malfi Yamazaki and Shinozuka (1990):

H=a" (A")'? ¢ (12)

This procedure is general. In our case the correlation m&trcan be assembled using the
products of the cross-correlation matfixand autocorrelation matrik,,,,. We have shown that
the eigenvector and eigenvalue matrice€andF ,,, solved separately can be used to compute
the required matrice®¥ and AF (see Egs. 9,10) and therefore computational effort can be
saved. It will be shown later that such a technique yieldstidally good results as the proposed
scheme depicted in the third part c) of the figure: decomjowsihto (i) the preparation of a
vector of cross correlated random variabigs and (ii) the expansion of each random fiefg
using a subseg? and always the same orthogonal base as in a). The advantdmgebposed
procedure c) is that the simulation of each random field caddoe separately using either a
KLE or EOLE base while the cross correlated random variajglésare prepared in advance.
Incorporation into an existing algorithm for simulationwfivariate fields is therefore simple
and transparent.

4. Transformation to non-Gaussian random fields

In most applications, the Gaussian random fldI& used to model uncertainties with spatial
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OH6E.G OB 6] [5G
a) b) ) Eq. (11) d)

0 e» "EELH ~BE9-O

]  [E- @ @@@f--@ OO

Figure 1: a) Simulation of a univariate random field usifig, eigenmodes; b) illustration of
the method due to Yamazaki and Shinozuka (1990); c) propogg¢idod for simulation of cross
correlated fields in two steps when components share thedigtmibution; d) proposed method
for components with different distributions, where eigeaissis of each field is performed
separately.

variability because of convenience and a lack of altereatinodels. However, the Gaussian
model is not applicable in many situations. For exampleaitrot be used to model Young’s
modulus or the strength of a material, which is always pasiti

Let us denote the marginal cumulative [probability] disttion function (cdf) of each com-
ponentH of the non-Gaussian vector random fididby G; [g;]. In the discretized version,
one can assemble the target correlation m:’ﬁ‘roj all random fields by computing the entries
F,ﬁ{ as a product of the autocorrelation coefficiéfjf (depending only on the positions of each

pair of points) and the target cross correlatfdii . It would be convenient to find an underlying
Gaussian random fieltl (with some cross correlation matriX studied earlier) that can be
easily transformed into the target fiedl while keeping the target cross correlation matrix be-
tween these components denoted’hyl he univariate nonlinear transformation of the Gaussian
variables, called the translation process by Grigoriu 8)99the mapping; (-):

H, (e0) = by [H, ()] = G {® [H, ()]} (13)

where® (-) is the standard cumulative Gaussian probability functiottia= 1,..., Ng; k =
1,...,N.

The Nataf 1962 model has been proposed by Liu and Der Kiuaediib86) for transforming
non-Gaussian multivariate distribution into standardi@aussian distribution. We will show
how the Nataf model can be used within the presented framefgoreffective simulation of
cross correlated Gaussian random fields in order to modeGaussian fields with prescribed
marginal distributionss;, the autocorrelation function and cross correlated@iaFor appli-
cation of the Nataf model, the correlation coefficignt of each pair ¢, j) of non-Gaussian
variables must be adjusted to form the correlation coefftcig; of a pair of Gaussian vari-
ables. The adjustment has been shown Liu and Der Kiuregh286] to be a unique solution
of a certain two-fold integral (Eq. 12 in Liu and Der Kiureghi(1986)) :

oo 0~

H;, — ul
Pij = / / sO(Hi,HpPi,j) df; dH; (14)

—00 —0O0
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where the values of the original variablés, f[j (with meansy;, ;1; and standard deviations
ai, o;) are expressed in terms of the the standard Gaussian \exiatthe spirit of Eq. (13) via
H; = G;' [® (H,)]. Functiony (H;, Hj, p; ;) is the standard bivariate Gaussian density. Due to
the uniqueness of the solution, the relationship in Eq. ¢b) be expressed as a correction to
the original correlation Liu and Der Kiureghian (1986):

Pij = K Pi; (15)

In general, the correction facter(satisfyingx > 1) is a function of both marginal distributions
and their correlationx = « (G;, G;, p; ;). For some pairs of distributions becomes just a
constant or a function of only some of the three types of mfaron. Other important properties
are that (i)p; ; = 0 for p, j, (i) |pi ;| < |pi;| and that (iii)p; ; is a strictly increasing function of
Pij-

In application of the Nataf model, we seek the correspondimgelation matrix' of a
Gaussian random vector field. The correct method is to solve the correction factor foheac
entry £ = kaF” depending orG;, G; and F,i{ Unfortunately, the full block correlation
matrix F does not follow the simple pattern from Eq. (8) any more. Irtipalar, the diagonal
blocks are not identical anymore, because the distribstigmmay differ in general, and the off-
diagonal blocks are not a simple multiple of the diagonatkl@or the same reasons). Even
if the distributions(z; were identical, the correctionswould prevent each off-diagonal block
from being a simple multiple of the diagonal block, becausgeneralC*’s are not zeros (and
also generally are not all the same).

We remark also that not every combination of the autocdicglastructure with the non-
Gaussian marginal distribution can be admissible for thppimey via underlying Gaussian ran-
dom field. There are two possible incompatibilities. The firse arises when the autocorrela-
tion functions of the non-Gaussian fields do not have a cpomding admissible correlations
in the Gaussian space (this happens often in cases of higtiveegorrelations combined with
strongly non-Gaussian marginals). The second incompigtiarises when the auto-correlation
function (or matrix) in the Gaussian space becomes nortipeslefinite and, therefore, not
admissible. The second problem can sometimes be remedigtdyng negative eigenvalues
and corresponding eigenmodes.

From the preceding paragraphs, it becomes clear that teemtexl approach for simulation
of Gaussian vector random fields can not generally be emgltoyresimulation of vector ran-
dom fields with arbitrary marginals. However, it is knownttf@ the majority of commonly
used continuous distributions the correction factoese only slightly greater than one Liu and
Der Kiureghian (1986). Therefore, the difference betwemmnetation matrice& andF is usu-
ally very small. The difference actually depends on the “@aussianity” of the distributions
G;. The closer the component distributiofs are to the elliptical distributions (Gaussian in-
clusive), the closer these two matrices are. In the paragrafier the following summary of
the method, we will try to find an approximatidti of the correct Nataf full correlation matrix
F in order to be able to profit from the presented framework faussian fields.

The proposed procedure for the simulation of random fieldsbesitemized as follows (see
Fig. 1c,d):

1. Given the common autocorrelation function in originabrfrGaussian) space, a Nataf
correction functiorw; (p) = k (G;, Gy, p) must be found for each field= 1,..., Ng
over the whole range of autocorrelation coefficient§ he set of functions; transform
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the original correlations into Gaussian space. Then, tleetsgd analysis of the auto-
correlation structure for each underlying Gaussian field @@ choice of the common
number of eigenmodey.., is made, i.e., Based on the discretization (grid of poirite) t
autocorrelation matriceB?,, are assembled and the corresponding set¥.gf largest
eigenvalues and the corresponding eigenvectbfsand A}* matrices) are determined.

In most cases, the Nataf’s correction will be only slighttgater than one over the whole
range of possible autocorrelations and thus the eigervalne eigenfunctions [vectors]
will be very similar for each Gaussian field. Therefore, oae solve one field only and

use iterations to refine the eigenmodes for the other fields.

2. Find a corrected cross correlation matéixgiven the target matrixC and marginals
G4, ...,Gy, using the Nataf model. Each off-diagonal entry is obtained’® =
Kb @-J, (i,7=1,...,Np). Then, eigenvalues must be computed with corresponding
orthogonal eigenvector@i:lC AIC) of the target cross correlation mati@ among ran-
dom fields. The choice of number of eigen-modgs. < Ny is made.

3. Simulation of Gaussian random vecgoof N, = Ng, - N,,, independent standard Gaus-
sian variableg;. For a given number of simulation$,,, a random vector becomes an
N, - Ngn, random matrix, where\V;,, is a sample size for each random variable. The
LHS technique is recommended for the simulation of the ramgector Vofechovsky
and Novak (2005).

4. The simulation of cross correlated random vegt8rby matrix multiplication (Eq. 11).
Matrices from Eqgs. (4 and 5) of the matdX (an enlarged matrix from step 2) and a
random matrix from step (3) are utilized.

5. Simulation of all underlying Gaussian fieldls- 1, ..., Nz one-by-one using the correct
portion of x and eigenmodes from step 1 (see Fig. 1d for illustration)chEandom
field ¢ is expanded using theth block x? of random vectorx® (xP) and theN,,,
eigenmodes from step (1):

H, =&} (A xP (16)

6. The last step is the transformation of standardized UyidgrGaussian random fields
i =1,2,..., Npinto non-Gaussian via Eq. (13).

One randomly chosen realization of the three fields is ploitteFig. 2a,b and c. In the
same figure it can be seen how the cross correlation of fieftilences the shape similarity of
corresponding realizations. Fig. 2d illustrates the tgppdot of the mean and variance profiles
of the field over the target domain. Such a plot serves as visual check for the accuracy of
simulations of fields.

In the procedure, we have made a certain simplification oftimsistent approach described
above, so it is important to assess the error of the apprdiamaAssume that the distribution
of the underlying Gaussian random field is simulated cagredthen the non-Gaussian field
obtained by the memoryless transformation has no erroeimtrginal distributions. The only
error can arise is in the correlation structure of the fiel@bviously, every field alone has a
correct autocorrelation structure, because it is expandetd) independent Gaussian variables
via orthogonal transformation of correct correlation ntas. Let us now take a look at the
cross-correlations obtained with the suggested approach.
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a) Random field H; (f,) b) Random field H,( E)
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Figure 2: a), b) and c) Random realization of simulated tvaréate Gaussian random field,
illustration of the meaning of correlation coefficientty;. d) Profile of the estimated mean
value and standard deviation gffield (Vg = 1000).

The simulation of the all nodal point values of all fields (88 can be written simply as:
H =®" (AP)'? xP (17)

where®® andAF are the eigenvector and eigenvalue matrices of a (blodjedial) correlation
matrix E that is constructed as follows. Matri consists of diagonal blockB%’ ; all off-

diagonal blocks are zero matrices. Therefore, the eigaaaigenvectorAF [®¥] matrices
have the matriceA} [®}'] on the diagonal blocks and zeros elsewhere. By substif&aq (11)

into Eq. (17) we obtain the fields in terms of transformatibimdependent variable&

H =" (A®)"” ®° (AP)"” ¢ =¥ ¢ (18)

~~
wF

Therefore, the resulting full (block) correlation matrixrche computed d8' = ¥F [\IJF}T
F — &E. (AE)1/2 D . (AD)1/2
[ch . (AR)? P (AD)1/2]T (19)
— #°(%)". D (A%) 37"
whereD = &P . (AD)l/2 - (AD)l/2 [@D}T- By this construction, th&’ matrix can be written
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in square blocks (each of ordai): F/ =

H, ... H, .. Hy,
Hl F/171 . e F/l,‘] . e F/17NF
H | F, ... F, i F, (20)
HNF FEVF,I ... F/]VFJ e F,17NF

Of course, the matrix is symmetric as a whole, but the bloc&shat symmetric in general.
Using Eq. (19), each block j can be written as

2,7 u u u) 1/2 ull
F,. =C" @ (A} (A" @3] (21)
N ]’
The F’ matrix (consisting of block#’, ; = O”\If“[\If“]T) represents a good approximation

of F in most cases (see Vorechovsky (2008) for a numerlcal plamith an estimation of
error). The diagonal blocks are equal to the autocorrelatioeach fieldF;, = Fi,. The
off-diagonal blocks™;, ;, in a certain sense, inherit a combination of the autocaticeis of the
i-th andj-th random field (a product of the eigenmodes of both). Naeifa pair of fieldsi, j
follow an identical autocorrelation structure, the cop@sding cross-correlation block is just a
C*J multiple of it (compare to Eq. 8).

The F’ can be computed and comparedRaobefore performing any simulations. If the
difference (cross correlation errors) is not acceptabigte analyst and he wants to return to
the consistent procedure employing the correct Nataf toamstion forF in the orthogonal
transformation via Eq. (12), we recommend to use Eq. (18ntbdi very good approximation
of the eigenmodes @& needed in Eq. (12). The eigenmodes can be refined iteratively

5. Conclusions

The main result of this paper is the utilization of the spagbroperties (eigen-properties)
of defined block correlation matrices. These can be advanteagy utilized for the simulation
of multivariate stochastic fields with a simple cross catieh structure and a common distri-
bution of components. If all fields share the same distrdushape, the decomposition of the
autocovariance structure is done only once for all univarelds. For Gaussian vector ran-
dom fields, the resulting distribution and correlation mdigs are correct. For non-Gaussian
fields the autocorrelation structure is correct for all figlout taking full advantage of the com-
putational simplification brings about small errors in a@®rrelations. These errors can be
predicted without any simulations. The reduction of comagiohal effort is often significant.
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