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Summary: Multiscale viscoelastic homogenization is employed for the assessment
of concrete creep. Recent nanoindentation results testified creep origin in calcium
silicate hydrates (C-S-H) on the scale of nanometers. First, the viscous properties
of C-S-H are identified by means of numerical inverse analysis from the level of
cement paste. Second, the upscaling to the scale of concrete is carried out via
correspondence principle. Predicted creep of concrete corresponds reasonably well
to experimental data.

1. Introduction

The renewed interest in concrete creep is driven by several considerations. To mention a few
of them, slender concrete members calls for a sophisticated prediction model for the assess-
ment of their service life, exceeding easily 100 years. Prestressing loses due to concrete creep
need to be accurately determined. On the material side, pure Portland cement becomes expen-
sive material and secondary cementitious materials (slag, fly ash) are incorporated. To assure
acceptable creep performace, creep experiments, lasting several months, need extrapolation to
tens of years. Such extrapolation may induce significant error (Bažant, 1999).

It has been recognized that concrete creep is attributed dominantly to cement paste. Fine
and coarse aggregates behave as an isotropic elastic material. The effect of aggregates for
creep attenuation was recognized experimentally, e.g. Brooks and Neville (1975) mentioned
the formula relating creep between cement paste and concrete under the same curing conditions

εcreep
concrete = εcreep

paste(1− fa)
α (1)

where fa is the volume fraction of aggregates and α is the exponent which has to be calibrated.
Continuing further to the submicrometer scale, it became evident that the main hydration prod-
uct, calcium silicate hydrate (C-S-H), exhibit significant creep during nanoindentation (Jennings
et al., 2005).

Instead of relying solely on empirical data, multiscale approach offers a tentative way. Pro-
posed methodology is based on the assumption that C-S-H is the only viscous component in
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concrete. However, direct measurement on C-S-H samples is impossible and viscous C-S-H
properties must be obtained from top-bottom inverse analysis. Here, the analysis is restrained
to the so-called basic creep, which is the state of no moisture transport in or out the sample.

2. Multiscale nature of concrete

Concrete is doubtless a multiscale material. Typical levels may be found at separable and re-
markable length scales

C-S-H level typically spans the characteristic length between 10 nm – 1 μm (Bernard et al.,
2003). Two morphologies of C-S-H were found,

cement paste level is found on the scale of 1 μm – 100 μm. Clinker minerals, gypsum, CH,
homogenized C-S-H and some capillary porosity are present (Bernard et al., 2003). En-
trained and entrapped air is accommodated here,

mortar level is considered on the scale between 1 mm and 1 cm. It contains homogenized
cement paste, fine aggregates such as sand and associated ITZ,

concrete level spans in typical concrete the characteristic length of 1 cm – 1 dm. Mortar, coarse
aggregates such as gravel and associated ITZ are typically found.

Multiscale nature of concrete helps to understand unlocalized phenomena on various scales;
concrete elasticity is a typical subject of homogenization (Bernard et al., 2003). Elastic ho-
mogenization relies on identification of intrinsic elastic properties and, using homogenization
methods, bridging the scales. The same idea will be pursuited here for the assessment of creep.

The extension from elasticity to viscoelasticity has been proposed and partially validated for
all scales (Pichler and Lackner, 2008). Although such approach might be predictive, proper
validation and coupling among levels must be carried out.

3. Constitutive Law for C-S-H

C-S-H is assumed to exhibit viscoelastic behavior of the B3 model, often used for the scale
of concrete (Bažant, 2001). For the case of no moisture or temperature change, the flow term in
model B3 can be simplified to a logarithmic law, which will be adopted here. If drying creep is
excluded, the B3 compliance function for uniaxial stress has the form

J(t, t′) = q1 + Cv(t, t
′) + q4 ln

(
t

t′

)
(2)

Cv(t, t
′) =

∫ t

t′
v−1(t)Ċg(τ − t′) dτ =

∫ t

t′
v−1(t)

n(τ − t′)n−1

λn
0 + (τ − t′)n

dτ (3)

v−1(t) =

[
q2

(
λ0

t

)m

+ q3

]
(4)

Several parameters were found to be constant for concrete, independent of its type and curing
conditions: λ0 ≈ 1 day, m = 0.5 and n = 0.1 (Bažant and Prasannan, 1989).

When uniaxial stress changes, the response is hypothesized to obey linearity with respect to
stress

ε(t) =

∫ t

0

J(t, t′)dσ(t′) + ε0 (5)
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where ε0 is the initial strain, which includes shrinkage, thermal strain and cracking strain.
The numerical solution of Eq. (5) is carried out with exponential algorithm for Kelvin chain (Jirásek

and Bažant, 2002) and continuous retardation spectrum (Bažant and Xi, 1995). The exponential
algorithm leads to

Δyμ = Δt/τμ (6)

λμ =
1− exp(−Δyμ)

Δyμ

(7)

1

vn+1/2

= q2

(
λ0

tn+1/2

)m

+ q3 (8)

E ′′ =

[
q1 +

1

vn+1/2

(
0∑

μ=min

1

Eμ

+
max∑
μ=1

1− λμ

Eμ

)]−1

(9)

where subscript n + 1/2 refers to time tn+1/2 at mid-step in log-time scale, i.e. the geometrical
mean between tn and tn+1, τμ are properly chosen retardation times of the μ-th Kelvin unit
(μ = 1, 2 . . . N), Eμ(t) are the corresponding moduli, which in general are age-dependent.

Note that when the time step Δt is constant, Eq. (9) provides the same tangent incremental
modulus E ′′ for non-aging material (q2 = 0). Poisson’s ratio is assumed to remain constant
during creep, and so the incremental tangent stiffness tensor in three dimensions, L′′, may
be assembled from E ′′ directly. The three-dimensional version of exponential algorithm is
completed as follows

Δε′′ =
1

vn+1/2

max∑
μ=1

[1− exp(−Δyμ)]γn
μ +

q4

tn+1/2

Δtσ (10)

Δσ = L′′ : (Δε−Δε′′) (11)

γn+1
μ = γn

μ exp(−Δyμ) +
λμE

′′

Eμ

(Δε−Δε′′) (12)

where strain tensor Δε′′ represents an inelastic strain increment tensor corresponding to the
history of loading, and γμ are the internal tensor variables (or partial strains) of the Kelvin units
which must be updated after each time step.

4. Inverse analysis based on FFT

The inverse analysis aims at identification of C-S-H viscous properties from the level of cement
paste. Numerical homogenization technique will be adopted, although the analytical correspon-
dence principle would give the same result in this particular case. The numerical homogeniza-
tion techniques rely on replacing the real microstructure by a representative volume element
(RVE) of the material.

The RVE of cement paste is here approximated by Bentz’s discrete hydration model CEM-
HYD3D from the National Institute of Standards and Technology (NIST), which has the reso-
lution of 1 μm (Bentz, 2005).
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The macroscopic viscoelastic response of RVE is obtained through the solution of the local
problem, which consists of the equilibrium and constitutive equations complemented by bound-
ary conditions. According to the exponential algorithm, two equations must be satisfied in each
time step

div Δσ(x) = 0 (13)
Δσ(x) = L′′(x) : (Δε(x)−Δε′′(x)) = L′′(x) : Δε(x)−Δλ(x) (14)

where inelastic strain increment Δε′′(x) is known from previous time step and can be replaced
after multiplication with incremental stiffness tensor by eigenstress tensor Δλ(x). Assumed
periodic boundary conditions are expressed here as decomposition of strain increments into
average ΔE and fluctuating part Δε∗(x) over the RVE

Δε(x) = ΔE + Δε∗(x) (15)

The usual way to solve Eqs. (13)-(15) is with FEM. Much faster solution is obtained by a
recursive iterative procedure based on FFT (Moulinec and Suquet, 1994)

Δεk+1(x) = Δεk(x)− Γ0(x) ∗Δσk(x) (16)

where Γ0(x) is the Green operator for arbitrary reference medium, which is explicit for linear
elastic material. The convolution in Eq. (16) corresponds to multiplication in Fourier space.

4.1. Inverse creep analysis for two-year old cement paste
The creep of C-S-H will be obtained from the creep experiment of two year old hardened cement
paste, with the water-to-cement ratio w/c = 0.5 (Beaudoin and Tamtsia, 2004). Two RVEs
10×10×10 and 50×50×50 μm of cement paste were reconstructed using CEMHYD3D model
(Bentz, 2005).

Parameters q1, q3, q4, λ0, n for the C-S-H creeping phase in model B3 are unknown. Pa-
rameter q4 quantifies the irrecoverable flow strain which can be determined from unloading,
independently of the other parameters of mature paste. Parameters q1 and q3 are in fact related
through nano-indentation data, but are subjected to a certain range of uncertainty, limited by the
creep attained.

Fig. 1 shows assigned viscoelastic behavior to C-S-H, in addition without flow term (q4 = 0)
to illustrate the effect of irrecoverable creep part. An arrow points to the time when indenta-
tion modulus is typically evaluated. The asymptotic compliance q1 = 0.0381 GPa−1 is about
93 % of compliance from nano-indentation data J(t + 0.00003 day, t) = 0.0411 GPa−1. The
elastic strain immediately after loading was not reported (Beaudoin and Tamtsia, 2004) and was
assumed to be 800 · 10−6 for static load 10.35 MPa at 0.01 day, Fig. 1. The choice has neg-
ligible effect on data after unloading when elastic strain is immediately recovered. The RVE
size 50×50×50 μm is obviously sufficient and the response does not differ from 10×10×10
μm, Fig. 1. The concurrence is attributed to a weak heterogeneity due to well hydrated cement
paste with the absence of large unhydrated cement grains.
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Figure 1: Compliance assigned to C-S-H (left), for comparison without the flow term (q4 = 0).
Measured total strain of two-year old cement paste (right) with simulated strain for two RVE
sizes.

5. Correspondence principle

Numerical homogenization is generally a time-consuming process as opposed to analytical
counterpart. The most simple viscoelastic analytical homogenization relies on correspondence
principle proposed by Lee-Mandel via integral transform to Laplace or Laplace-Carson domain.
The latter integral transformation is defined as

F (s) = s

∫ ∞

0

f(t)e−stdt (17)

f(t) =
1

2πi

∫
F (s)

s
estds (18)

where s is a variable in the frequency domain. Once a local constitutive law per phase r is
formulated as a convolution, the integral transformation yields the same formalism as in linear
elasticity (Matzenmiller and Gerlach, 2001)

εr(t) =

∫ t′=t

t′=0

Jr(t− t′) :
∂σr(t

′)
∂t′

dt′ = Jr ∗ σr (19)

The transformation relies on compliance tensor in the form Jr(t− t′) which is valid for non-
aging, non-solidifying materials. Certain extension to aging materials is possible through time-
shifting procedure, when compliance tensor has the form Jr(ξ(t) − ξ(t′)). This approach was
used for creep analysis of cement paste with partial success but the creep response at different
loading times t′ was unsuccessful (Grasley and Lange, 2007).

The major challenge is the inverse transform from Laplace-Carson domain to the real time
domain, Eq. (18). The collocation method implemented in Pierard (2006) is generally unstable,
strongly depending on the selection of retardation times and collocation points. Stehfest (1970)
proposed almost flawless numerical algorithm, based on the expectation of f(t) in the form of
probability density.

The comparison between Laplace-Carson and FFT-based homogenization approach was car-
ried out on two year old cement paste (Beaudoin and Tamtsia, 2004). Input data relied on
volume fractions of chemical phases and viscous parameters of previously calibrated B3 model
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for C-S-H. Only C-S-H was allowed to creep, other chemical phases behaved elastically. The
results are plotted in Fig. 3 for q1 = 0.0381 1/GPa, q2 = q4 = 0, q3 = 0.040 1/GPa, n = 0.25,
m = 0.5. The difference among numerical and analytical approaches is not significant, although
the paste porosity is 0.202.
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Figure 2: Comparison of FFT-based and analytical methods for two year old cement paste.

6. Identification of C-S-H creep

In the preceding sections, analytical homogenization methods were found to provide similar
results as the numerical solution. Now, the challenge lies in transferring viscoelasticity to the
scale of concrete, distinguishing the role of aggregates. From an engineering point of view,
creep is quite significant for long-time durations. The combination of analytical homogenization
in Laplace-Carson domain and calibrated C-S-H creep law should yield approximate solution.

Brooks (2005) measured basic creep and autogeneous shrinkage of concrete with different
w/cs or aggregate types for the duration of 30 years. Compressive uniaxial stress, with the
magnitude 0.3 of 14 day compressive strength, was imposed on 14-day old concrete. Autoge-
neous shrinkage was subtracted from total strain. Only basic creep will be simulated in order to
circumvent differential shrinkage caused by drying.

The aim was to maintain as many parameters as possible from the previous simulation, as-
suming again q1 = 0.0381 1/GPa, q2 = 0, q3 = 0.040 1/GPa, n = 0.25, m = 0.5. Apparently,
irreversible creep caused by q4 has the most influencing effect on long-term properties. This
was confirmed again by Brooks (2005) who found reversible part under 30-year load duration
as low as 5 - 14 %, determined at six months after unloading.

Fig. 3 shows the results from uniaxial creep at four scales. In order to match concrete creep,
the fit yielded q4 = 0.018 1/GPa. Young’s modulus of coarse and fine aggregates was assumed
as 60 GPa, Poisson’s ratio as 0.2. Air introduced in concrete was considered to act at the level
of cement paste. Mori-Tanaka method was used for the transition among all three scales.

It must be emphasized that the identification of creep parameters is not unique and proposed
approach has several limitations. The most neglected fact is the aging of C-S-H which needs to
be disregarded in the present analytical approach. If not so, compliance expressed in the general
form Jr(t, t

′) can not be used directly in the convolution in Eq. (19). Certain remedy is the
time-shifting approach, which would yield compliance mapping in the form Jr(ξ(t) − ξ(t′)).
Therefore, irreversible creep is treated only approximately. The onset of loading, originally

Engineering Mechanics 2009, Svratka, Czech Republic, May 11 – 14

1298



 0

 0.05

 0.1

 0.15

 0.2

10-4 10-3 10-2 10-1 100 101 102 103 104 105

C
om

pl
ia

nc
e 

[(
G

P
a)

-1
]

Time (t-t’) [days]

CSH
Paste

Mortar
Concrete

Experiment

Figure 3: Creep at four scales as predicted by analytical homogenization methods.

proposed in B3 model, is set to one day

q4 ln

(
t

t′

)
= q4 ln

(
1 +

t− t′

t′

)
≈ q4 ln

(
1 +

t− t′

1

)
(20)

From a material point of view, fine and coarse aggregates are surrounded by iterfacial tran-
sition zone. In this zone, higher w/c exist due to increased amount of porosity. Neglecting the
transition zone localizes all deformation into cement paste. Viscous properties of cement paste
represent the upper bound.

7. Conclusion

Presented multiscale viscoelastic approach shed the light on the deformation during basic creep
at three levels; cement paste, mortar and concrete. Basic assumption is creep localization in
C-S-H phase found on the scale of nanometers. Proposed methodology led to the identification
of C-S-H constitutive law. Although the extension to the level of concrete seems applicable,
several phenomena are not treated correctly and need refinement. Validation shows correct
identification of elastic properties and homogenization methods; short-term creep corresponds
to elastic solution.
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