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STUDY OF THE CAVITATING VORTEX ROPE IN HYDRAULIC
TURBINES

P.Rudolf, F. Pochyly

Summary: Motion of cavitating vortex rope with influence of its rotation has
been studied. The solution is performed in Lagrange coordinates. The nonlinear
mathematical model takes into account surface tension on the rope interface. The
boundary condition is represented by Laplace equation and state equation is
expressed by polytropic law.

1. Introduction

Flow in the outlet diffuser of the hydraulic turbines - draft tube - is accompanied by severe
instability for non-optimal operating points. This phenomenon is result of the vortical flow
instability, in turbomachinery is usually termed "vortex rope". Core of the vortical structure is
location of the minimum pressure, often the pressure reaches value of saturated vapor
pressure and so called "cavitating vortex rope" appears (Illiescu et al., 2008). It is very
undesirable effect, which causes vibrations, pressure pulsations and noise. Therefore
extensive studies are aimed at its description and understanding. Contrary to many papers
recently published, which contain results of computational and experimental research, this
contribution is focused on theoretical investigation of the stability mechanism.

Fig. 1 Cavitating vortex rope (experimental visualization, Rudolf(2009))
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2. Trajectory of the fluid particle in Lagrange coordinates

Let us assume that cylindrical vortex rope originated due to rotation of the liquid. Its motion
and vibration of its surface will be described using Lagrange coordinates.

X, = F(alat)cos[az + ‘/’(alat)] (1)
X, = F(alat)sm[az + l//(al’t)] (2)
Xy =a, +Cyt

We will assume that the rope surface can pulsate. Circumferential and axial velocity
distributions can be prescribed in time t = 0. The coordinate system is depicted in Fig. 1.

F and w in relations (1), (2) are unknown functions yet, which will be determined from
force equillibrium equation.
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Figure 1 Curvilinear coordinate system
Let us consider following transformation relations (see Fig.2):
CD=a2+(//(a1,'[) 4)
®=(0+5=a2+1//(a1,t) (5)
singzhsingo—@cosgo (6)
r
cosg:——@singp—hcosgo (7)
r r r
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R =Xy, sing + X,, cos ¢ + \/r2 + (XZO sin @ + X,, cos go)z (8)

a,+Ha b=

Y

Figure 2 Kinematics of the particle motion

3. Continuity equation
Mass conservation principle, continuity equation, is expressed by jacobian:

J(0)=J(t)= L =2 -2 0 =a )

oa, da, oa, oa,

Partial derivatives with respect to time have following form:

6;[1 =F* cos[a, +w(a,,t)]- F®"sin[a, +y(a,,t)]
0%, e
prea F* cos[a, +y(a,,t)]— F @ sin[a, +y(a,,t)]-
— F*®"sina, + y(a,,t)]- FO* sin[a, + w(a,,t)]- FO* cos[a, + w(a,,t)]
2
aatfl _ F" cosfa, +w(a,,t)]- 2F " sinfa, +y(a,,t)]- 0
— F®* cos[a, +y(a,,t)]- FO* sin[a, +y(a,,t)]
58th _ F*sinfa, +p(a,t)]+ FO" cosla, +(a,,t)]
2
aatx22 _ Fsinfa, +w(a,t)]+ F @ cosla, +y(a,,t)]+ F*d" cosla, +w(a,,t)]-

— F®sinfa, +w(a,,t)]+ FO* cos[a, +w(a,,t)]
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2
aatX; _ F*sinfa, +y(a, )]+ 2F ®" cosfa, +y(a,,t)]-
— F®*sinfa, +y(a,,t)]+ FO* cosla, +w(a,,t)]
2
a@t)z(l = (F * —F®* )cos[a2 +y(a,t)]- (2F'CI)' + Fo™ )sin[a2 +y(a,,t)]
2
a&t)iz = (F * —FO” )sin[a2 +y(a, b))+ (2F'(D' + F<I)")(:os[a2 +y(a,,t)]

Let us denote to simplify the relations (12) and (13):

a=F"-F®? ; B=2F0 +F0"
o’
ot?

o°x ,
8t22 = asinfa, +w(a,,t)]- Bcosla, +y(a,,t)]

=a COS[az + ‘//(al ’ t)] -B sin[&2 + V/(al ) t)]

Derivatives with respect to spatial coordinates:

2;1 = x! = F'cos[a, + y(a,,t)]- Fd'sin[a, + w(a,,t)]
1
S;z = —Fsin[a, + y(a,,t)]
2)6(12 = F'Sin[az + '//(alat)]+ F(I)'COS[aZ + V/(al’t)]
1
2—:; = —F cos[a, +y(a,,t)]

After inserting (16)-(19) to continuity equation (9):

(F'cos— Fd'sin F cos[a, + w/(a,,t)]+ (F'sin+ F®' cos F sin[a, +w(a,,t)]= &,

(F'F)cos’+ F'Fsin’+ F2®'sincos[a, + w(a,,t)]- F2®'sincos[a, +w(a,,t)]=a

FF =4

i(l[:zj = al
oa, \ 2
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For circular cross-section of the vortex rope we may write:

F=r=./At)+a’ (20)

4. Velocity components for planar motion

Let us determine circumferential and radial velocity components for planar motion of the
fluid particle:

C, =X/ sin@ + X; cos ¢ (21)
C, =—X, cos@ + X, sing (22)
Using relation (5):

c, =—X sin(® — &)+ X; cos (P — ¢)

= [— F*cos® + FO sin® + X]'O][sinCDcosg —cosCDsing]+

C
4
+ [F' sin @ + FO* cos D + X, |[cos D cos & + sinDsing] =

(— F*cose—F® sing+ F*cose + FDsin g)sin(Dcosd) +
(+ F*sing — FO° cos 8)0082 D+ (F(I)' cos¢ + F*sin g)sin2 D+

+
+ X, (sinCD cos& —cosDsin €)+ Xgo(cosCD cosé& +sin D sin é‘)

sin(®-¢) cos(®—¢)

Final expression for circumferential velocity component:
¢, = Fsing + FO" cos e + X, sinp + X3, cos (23a)
C, = X cos(® — &)+ X sin(® — &)
C, = (F' cos® + FO sin® + X{O)(cosq)cose —sin®sing)+
+ (F' sin® + FO" cosd + x;o)(sin(Dcosg —cos®Dsing)=
= (F' sing — FO* cosg + FO* cose — F* sin g)cosq)sind) +
+|F*cose — F®*sin g)cos2 D + (— F®'sing + F* cosg)sin2 O +
+ X[, COS@ + X3, sin @
Velocity component in radial direction

C, =F cose —FO’sine + Xj, cosg + X, sing (23b)
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5. Force equillibrium equation

Pressure function will be determined from force equillibrium equation:
07X, oX +62x2 o, 1 dp _
ot’ da, ot* da, p pa,

0

[acosq)—ﬁsinq)xl'(;](— Fsinq))+(asinq)+ﬂc0scl)+ x;('))F cos®+1§: =0
p 0a,

. . oo oo - 1
(—oF +aF )smd) cos® + fF sin” @ + fF cos” @ + F cos X35 — FX sm+—a—p =0

p oa,
It follows then:

(%p = p(Fx;; sin® — Fx; cos® — AF )
2

Pressure function is obtained after intergration:

p=H (al,t)+p(— Fx;; cos® — Fx3; sin® — ﬂFaz)

Because pressure function must be continuous for x; = const., it must hold:
£=0
2F°0° + FO™ =0

(D"+2F.<I)°:O:
F
cD': Bliazl)

p=H(a,t)- p(FXl'(; cos D + Fx3; sind))

It must further hold that:

O°X, %+azxz o 10P _

otr da,  ot* oa, 0
1 PP

(acosq) — [sin® + Xl'(;)(F'cosCD —F®'sin®) +

+ (a sin® + X;('))(F'SinCD + F®'cos®)+ Lo 0

p oa,
aF'cos’ @ + aF 'sin? ® — aF D' sin ® cos D + D' sin D cos P +

+X1'5(F'cos®—F@’sinq>)+(F’sinq>+an'cosq))x;5+lsp:0
a'l

1 ap ! oo ’ , . . , . ,
754_0{': +X10(F cos® - Fd Sll’lCD)+X20(F sin® + FO COS(D)
P 08
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It follows from equation (27):

P _ 8—|_|—,0X1'(;(F’cos¢> — F®'sin®)— px3 (F'sin® + FO' cos D)
da, oOa,
Let us insert to (28):
lﬁ+ aF' =0
p 08,
LIS (29)
oa,

Now let us inset from equation (13a):

oH (e e
a7&1=—pF (F-Fo)

Rearranging this relation we will finally obtain from expressions (20) and (26):
D =——; F=Al)+a
1
Fr=La(ara)>
2
1 _
Fe=Lat(ara)a - Laz(ara?)
2 4
1
F'=a(A+a’)>
! . 1
F*F’ =BA"(A+ a’)> —%A'Z(A+ a’) %}al(m a’) 2

EE :%alA"(A+af)_1 —%alA'z(A+af)’2

FFo? = (Ara?) a(Aral)z- BX(A+al)’

FFd” =aB*(A+a’)’

oH 1 . S| . - -
6_a1:_p[5alA (A+a12)I—ZalAz(A+af)z—alBZ(A+af)2}
@:_ lAuL_lA.z al _ ale
da, 2 A+a’ 4 (A+alf A+d
A" | a B2
H :U(t)—p{ i 1n(A+a1 )+8A+alz _IAl+af dal} (30)
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Inserting to (27):
A” A% 1 a B’
=U(t)- In|lA+a?)+ - 1 da, + F cos®x’. + F sin ®x;: 31
p () 9{4 ( 1) g A+af -[A+a12 1 10 20} 31)

6. Polytropic law and dynamic boundary condition
Equation (31) must be accompanied by state equation of ideal gas. In time instant t =0:

Po (0)\/();«(0): po(t)‘/K(t)

where py 1s pressure inside the rope.
For cylindrical vortex rope in plane (2D):

Po (O)rOZK = Po (t)rZK(t)

5,0= 0[]

Dynamic boundary condition on the cavitating vortex rope interface is represented by
Laplace-Young equation. For a; = ajg :

o - =pylt)- plt)

1 R\ A™ A2 1 . aB’ da

~=p,0) > | —-U(t)+ps—1 r2+—‘/ 32
L BB P A D
Equation (26) must be taken into account :

.__B(a)
®= Alt)+a’

together with initial condition for function ®(t =0): ®(t =0) =0.
For a, =4a,,:
(D.[A(t)*' alzo]: B(a,) (34)

B(al) must be inserted into relations (32), (34).

7. Solution of for the special case of solid body rotation
Let us assume a,, >> A(t). If B(a,) = ®,a}, as it comes from (34), then

D' =@, = D =nt (34a)
Liquid rotates as solid body with constant angular speed @, .

Laplace equation has following form for t =0:

arl: P,(0)-P(t=0) (35)
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Let us denote (t=0)= Z , and assume:

(t)=20+2(t) (36)

Z=n(0)-X, (37)
0)=-"-%, (38)
Relations (36), (38) will be inserted to (32):

o :_[0+20j(r0j K -3, -2 +p —ln(r )+ A — jale - da, (39)

r r, r 8 r (A n af) .
r’=At)+a; (40)
A(t): r2 —a12 (41)
A=2rr (42)
A* = 4(rr)’ (43)
A=2(rry (44)

The integral on the right hand side of (39) is computed under assumption of constant
angular speed (see (34a)):

B(al) = a)oalz

(45)
245 5
1
A’a 2Aa;
=w;|{a - ! da, =
e sy o] .
OA A
:wg[{z—zA+af_AlnA+a12+A+afj:
_a)g[a12+A2 12—AlnA+a12J
2 2 A+gq

After inserting (40)-(44), (46) to (39):

O O r 2 (rr.). 2 r.z 2 r2 (r2 - r2)2 1 ( 2 2) 2
T 245, 2] -5, -S®)+p—LIn(r)+— | L+ (r? =1 )Inr
r (ro oj(rj o X)) +p > (r’) ) 0l ) 2 0
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2k o2 2 22 )
9= —(0+20J(r°j -3, -2(t) +p{(r'2 +rre )ln(r) + r2 - o, [r;+(r2r0)12_ (r2 -1 )ln rz}
r r r

0

(47)

Equation of cylindrical vortex rope in two dimensions without rotation is presented for
comparison (Brennen, 1995):

o R VN o d dR 1 (drRY
T4y | 2| 2-Z+p—|R— |nR+-p| | =-[= o1,
[Ro+ OJ(R) R+pdt( dt)n +2'0(dtj [Zo+pu (1)) s

Equation (48) is obtained from (47) for @, =0, which is confirmation of validity of

derivation of the equation (39).

The final result (39) is a Rayleigh-Plesset like equation for cylindrical vortical structure
filled with saturated vapor. From numerical point of view it is highly nonlinear ordinary
differential equation, which must be solved numerically. Stability of the numerical solution
for different values of angular speed corresponds to stability of the vortex rope motion.
Results of the numerical experiments with equation (47) is presented in Figs. 3, 4. Runge-
Kutta numerical procedure was applied for integration of the equation (47). Radius change of
the cavitating vortex rope is excited by a pressure step function. It is apparent from Fig.3 that
for bigger initial radius (Ry = 0,04 m) vortex rope motion becomes unstable when higher
angular speeds of the solid body rotation are reached.

Rope radius=0.0045 m, dR/dt=0
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Figure 3 Response of the vortex rope to pressure step function (Ro = 0,0045 m)
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Rope radius=0.04 m, dR/dt=0
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Figure 4 Response of the vortex rope to pressure step function (Ry = 0,04 m)

8. Conclusion

Derivation of the equation of motion for cylindrical rope cross-section in Lagrange
coordinates enabled to include influence of the velocity field. This allows to study stability of
the cavitating vortex rope motion for different inlet velocity profiles. However it should be
stressed that the final equations are confined to inviscid flow and exclude translational motion
of the rope.

Presented analysis forms one of the first steps aimed at understanding of the cavitating
rope behavior, especially on the influence of the inlet velocity field on shape of the vortex

rope cross-section. Further investigations will comprise experimental and computational
(CFD) studies of the problem.
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List of symbols:

a; curvilinear coordinates
J jacobian

p pressure

r radius

t time

X; cartesian coordinates

€ angle

[0} angle

) angle

c surface tension

® angular speed

) pressure in time t = 0
subscripts:

0 respective quantity in time t =0
1,2,3 axes
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