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Summary:  The contribution starts with the short summary of the growth and 
remodeling model. Then the multiple scale method is shortly introduced. The main 
part will be dedicated to the analysis of the dynamical system corresponding to 
the isometric behavior of the periodically stimulated 1D continuum. This kind of 
stimulation corresponds roughly with the excitation of the muscle fiber.

1. Introduction
This contribution joins the previous papers of the authors – e.g. Rosenberg & Hyn ík (2007) – 
dealing with the application of the growth and remodeling theory (GRT) according to DiCarlo 
& Quiligotti (2002) – on the muscle fiber modeling. This approach allows taking into account 
also the change of the stiffness of the muscle fiber during time. This effect was 
experimentally approved and modeled, see e.g. Herzog (2005). The same approach can be 
used to model the time evolution of the piezo-electric stack. In both cases the final 
formulation has the form of the dynamical system with two degrees of freedom. The 
numerical experiments have shown the interesting behavior of this system, e.g. the existence 
of some bifurcations. This contribution is devoted to the analysis of these properties using the 
multi-scale method (MSM), see e.g. Nayfeh (1973). This method is the kind of the 
perturbation method and in general allows decreasing the number of degrees of freedom. This 
will not be the case here but MSM will be used to model the behavior of this system close to 
the bifurcation point.

The contribution starts with the short summary of the model development. Then the MSM 
will be shortly introduced. The main part will be dedicated to the analysis of the dynamical 
system corresponding to the isometric behavior of the periodically stimulated muscle fiber. 
This kind of stimulation corresponds roughly with the excitation of the muscle fiber. 

2. Problem setting 
In GRT the starting point is the initial configuration 0B  that „growths“ and “remodels” , i.e. 
changes its volume (“growth”), anisotropy (“geometrical remodeling”) or material parameters 
(“material remodeling”). This process is expressed at first by the tensor P (further growth 
tensor) that  relates  the initial  configuration  to  the  relaxed  one rB   with  zero  inner stress.
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To the real configuration tB  where the inner stress invoked by growth, geometrical 
remodeling and external loading can already exists, it is related by deformation tensor rF  (see 
Figure 1).

Figure 1 Initial, relaxed and current configurations 

The deformation gradient between the configurations 0B  a tB  is 

PFp     (1) 

According the work of DiCarlo was in DiCarlo & Quiligotti (2002) developed the following 
system of equations describing the behavior of the muscle fiber  

c
;

Fel ; FHdis
; ECGV

                    (2) 

K
RKM ; GradKm 0

where ),( cKF,  is the free energy related to the relaxed volume. K represents the material 
parameters which can be changing during the material remodeling – K  is the corresponding 
velocity and 1PPV is the velocity of growth. The stress  was decomposed into the elastic 
part el  and the dissipative part dis , E is the tensor of the Eshelby's type (further shortly 
Eshelby tensor), 0, KHM, and G are in the case of passive continua positively definite 
matrices. In Rosenberg & Hyn ík (2007) was shown that in the application on muscle 
contraction this condition need not be fulfilled. The cause is the energy supply via 
ATP ADP process. C is the generalized external remodeling force and  and c  are 
chemical potential and concentration of the relevant component respectively. Here we will not 
deal with the physical interpretation of all these parameters but we apply the equations (2) on 
1D continuum. Let’s the 1D continuum has the initial length 0l . Its actual length after growth, 
remodeling and loading will be l. The relaxed length (it means after growth and remodeling) 
is rl . For the corresponding deformation gradients we can write 
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In the isometric case is .constl  For the free energy we will use at first the following form 
suggested by Fung: 
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For 0  we obtain the common form for linear elastic continuum  
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Introducing from (2) and (3) into (1) we obtain the system of equations for the evolution of 
relaxed length (after growth), stiffness and stress (eventually force) 
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Here m, h and g correspond with the matrices HM, and G in 1D case. To be able to analyze 
the properties of the dynamical system we will rewrite the equations (6), (7) and (8) into the 
dimensionless form. The values in these equations have the following dimensions: 
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We will introduce the following dimensionless variables 
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The dimensionless form of this nonautonoumos system is  
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where ;;1 ky
l

x
r

l
ll r

r and rll,  is the length of the continuum in actual and relaxed 

configuration and k  is the dimensionless stiffness . mrDC ,,,,  are the parameters. If we 
use the more simple form for the free energy (5), we obtain 

1
2

sin 2xytDCxx ; 21
2
1sgn xrmy     (11) 

According to some numerical experiments we can see (Figures 2a and 2b) that both models 
have qualitatively same properties. Therefore further we will focus our attention on the 
simpler one (11). 
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Figure 2 Response on the periodical stimulation for 
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3. Dynamical analysis for D = 0 
This analysis was published in Rosenberg & Hyn ík (2008). It was proved the existence of 
the degenerated Hopf’s bifurcation for C = 0 and sgn m = –1. The situation is shown on 
Figure 3 in the right corner. Depending on the sign of C there exists one stable and one 
unstable equilibrium point and for C = 0 stable limit cycle around these points. 

Figure 3 Stability domains in the parameter space 

4. Dynamical analysis – soft resonant excitation 
We try to analyze the behavior of this system with the periodical stimulation near the 
bifurcation point C = 0 for sgn m = –1, see Rosenberg & Hyn ík (2008), using multiple-scale 
method, see e.g. Nayfeh & Balachandran (1995). We assume the following form of the 
solution
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where 10   is the scalar parameter.  All  variables  in  (12) are function of 10 ,TT  where 
tTtT 10 , . Further we assume  

0102
2
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It means that we analyze the case when the stimulation is weak and the periodical term is 
smaller. 
According 01 TT we can write 

1102
2 sinsin TTDtD       (14) 

Putting from (12), (13), and (14) into (11) and comparing the terms with 10 ,  and 2  we 
obtain the following systems of equations:  
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The equilibrium point of this dynamical system has the coordinates 
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If we analyze the stability of this point using equation in variations, we obtain for the 
eigenvalues the relation 
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and therefore the points are in this stage of approximation stable. 

For :1

For .;0 00 constxy  the corresponding system has the form 
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Corresponding equation only for 1x  is 
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The solution has than the form 
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For :2
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After putting from (20) we obtain the equation for 2x :
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From the setting the secular terms equal zero we obtain the equations for 21 , KK  as 
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and 21, kk  are constants.  
The first terms on the right sides of (24) tend to zero if a<0 and therefore for 

110 001 xisthatxandC
or 110 001 xisthatxandC .

Let cos,sin 21 cKcK  where ,c  are new parameters generally depending on 1T .
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The solution is than 

1
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To analyze the stability of this solution we introduce the new parameters ,c  into (23). After 
substitution

11T       (27) 

we obtain the following system of equations 
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Stationary point has the coordinates 
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Equations of variations for (28) are 
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For the eigenvalues we obtain the equation 
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and then 
12,1 ia       (32) 

Asymptotical stability occurs if 

110 001 xisthatxandC

or 110 001 xisthatxandC

Inserting from (27) into (26) we obtain the final form of solution 
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We can conclude, that in the nearness of the eigenfrequency  („resonant excitation“) the 
resulting steady motion has approximately the same frequency ( 1 ) – „the free 
oscillation component is entrained by the forced component“ – Nayfeh & Balachandran 
(1995). For the numerical example see Figure 4. 
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Figure 4 Response on the periodical stimulation for 
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5. Dynamical analysis – soft nonresonant stimulation 
Let
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2
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The equations obtained for 0  and  1  and their solution will be the same as in the previous 
section. The difference will occur for 2 :
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For the secular terms we can write 
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and after short simplification  
10 aT

iii keKaKK       (37) 
For a < 0 the amplitudes iK converge to zero, for a = 0 are constant and for a > 0 diverge to 

infinite. Let a < 0, that is  
110 001 xisthatxandC

or 110 001 xisthatxandC
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Then the equation (35) will have very simple form 
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The solution is  
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and from (21b), which has the same form as in the case of soft resonant stimulation, we obtain 
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If we change the constant parameters 
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the final solution has the form 
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Second term on the RHS of (42) is the rest of 1y , compare with (20). For incommensurate 
frequencies we represent these equations the quasiperiodic motion. From the initial conditions 
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Shifting the origin into the point with coordinates 00 , yx  we obtain for the orbit in the state 
space
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To construct the Poincare mapping we will sample the time with period n2 . Then 
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Eliminating parameter n we obtain the equation of ellipse. On Figure 5 we can see the 
corresponding numerical example – the attractor in Poincare mapping. Figure 6 shows its 
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destruction and transition to chaos for further decreasing C. The analysis of this process needs 
the change of (13) and the approximation of higher order. 
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6. Conclusion 
Shortly summarized results of the analysis in case D = 0 (in detail see in Rosenberg& Hyn ík
(2008)) when the control parameter is C show the existence of the degenerated Hopf’s 
bifurcation. For C = 0 the limit cycle with the frequency  can be observed.

Main part of the contribution is devoted to the analysis of the soft (small D) resonant 
( ) and non-resonant stimulation using MSM.  
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The results of this analysis are compared with the numerical experiments. It is analyzed 
also the influence of the parameter . This parameter doesn‘t change the qualitative 
properties of the system. 
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