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Summary: We consider a composite medium made of weakly piezoelectric inclu-
sions periodically distributed in the matrix which is made of a different piezoelectric
material. The medium is subject to a periodic excitation with an incidence wave fre-
quency independent of scale ε of the microscopic heterogeneities. Two-scale method
of homogenization was applied to obtain the limit homogenized model which de-
scribes acoustic wave propagation in the piezoelectric medium when ε → 0. In
analogy with the purely elastic composite, the resulting model is featured by exis-
tence of the acoustic band gaps. These are identified for certain frequency ranges
whenever the so-called homogenized mass becomes negative. The homogenized
model can be used for band gap prediction and for dispersion analysis for low wave
numbers. Modeling of these types of composite materials seems to be perspective
in the context of Smart Materials design.

1. Introduction

By the phononic materials we understand bi-phasic elastic media with periodic structure and
with large contrasts between the stiffness parameters associated with different phases, whereas
their specific mass is comparable. It is well known that for certain frequency ranges, such
elastic structures can suppress the elastic wave propagation, i.e. they exhibit the band gaps.
Here we consider piezoelectric composite materials where the large contrasts are related not
only to elasticity, but also to other piezoelectric parameters, namely the piezoelectric coupling
coefficients and the dielectricity.

An alternative and effective way of modeling the phononic materials is the asymptotic ho-
mogenization method applied to the strongly heterogeneous elastic, or piezoelectric medium.
We consider a composite made of weakly piezoelectric inclusions periodically distributed in the
matrix which is made of a different piezoelectric material. The medium is subject to a periodic
excitation. The homogenized model of acoustic wave propagation in the piezoelectric medium
is characterized by the homogenized elastic, dielectric and piezoelectric parameters and by the
homogenized mass tensor. The dispersion properties and namely the band gap distributions are
inherited from the homogenized mass tensor which depends nonlinearly on the incident wave
frequency; when this tensor is negative (in the sense of its eihenvalues) the wave equation looses
its hyperbolicity. According to the number of the negative eigenvalues the wave propagation is
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restricted to a certain direction, so that the homogenized material is strongly anisotropic. We
refer to interesting paper Milton and Willis (2007), where anisotropy and randomness aspect in
the phononic materials are discussed.

In the context of mathematical modelling, the method of homogenization was proposed to
study the heterogeneous elastic media (sometimes called phononic crystals) in (Auriault and
Bonnet, 1985) and recently treated in (Avila et.al., 2005, 2008), where also numerical results
were reported. For related photonic problem in electromagnetic wave propagation see Bouchitté
and Felbacq (2004).

For elastic composites an existence of band gaps for certain wavelengths was shown in
Avila et.al. (2008) as the consequence of the non positivity of the limit “homogenized mass
density”. In the present paper we consider acoustic wave propagation in a piezoelectric strongly
heterogeneous composite; the problem was formulated in Rohan and Miara (2006-B). Here we
summarize the esential homogenization results and propose the dispersion analysis which in-
volves modified Christoffel acoustic tesor, due to presence of the piezoelectric coupling with
the electric field. This is an extension of the recent publication (Rohan et.al., 2009) where the
elastic homogeneized phononic material was discussed in detail.

2. Piezoelectric phononic material

We consider a piezoelectric medium whose material properties, being attributed to material
constituents vary periodically with position; the period is denoted by ε. Throughout the text all
quantities varying with this microstructural periodicity are denoted with superscript ε.

2.1. Definition of the strongly heterogeneous material

The material properties are related to the periodic geometrical decomposition which is now
introduced, see Fig. 1. We consider an open bounded domain Ω ⊂ R3 and the reference cell
Y =]0, 1[3 with inclusion Y2 ⊂ Y , whereby the matrix part is Y1 = Y \ Y2. Using the reference
cell we generate the decomposition of Ω as follows

Ωε
2 =

⋃
k∈Kε

ε(Y2 + k) , where Kε = {k ∈ Z| ε(k + Y2) ⊂ Ω} ,

Ωε
1 = Ω \ Ωε

2 ,

so that Ω = Ωε
1 ∪ Ωε

2 ∪ Γε, where Γε is the interface Γε = Ωε
1 ∩ Ωε

2.
Properties of a three dimensional body made of the piezoelectric material are described by

three tensors: the elasticity tensor cεijkl, the dielectric tensor dε
ij and the piezoelectric coupling

tensor gε
kij , where i, j, k = 1, 2, . . . , 3. As usually we assume both major and minor symmetries

of cεijkl (cεijkl = cεjikl = cεklij), symmetry of dε
ij , i.e. dε

ij = dε
ji and the following one of gε

kij:
gε

kij = gε
kji.

We assume that inclusions are occupied by a “very soft material” in such a sense that there
the material coefficients are significantly smaller than those of the matrix compartment, except
the material density, which is comparable in both the compartments; as an important feature
of the modelling, the strong heterogeneity is related to the geometrical scale of the underlying
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Figure 1: Periodic structure of the piezoelectric composite with ε2-scaled material in the inclu-
sions Y2.

microstructure by coefficient ε2:

ρε(x) =

{
ρ1 in Ωε

1,
ρ2 in Ωε

2,
cεijkl(x) =

{
c1ijkl in Ωε

1,
ε2c2ijkl in Ωε

2,

gε
kij(x) =

{
g1

kij in Ωε
1,

ε2g2
kij in Ωε

2,
dε

ij(x) =

{
d1

ij in Ωε
1,

ε2d2
ij in Ωε

2.

(1)

2.2. Problem formulation

We consider stationary wave propagation in the medium introduced above. Although the prob-
lem can be treated for a general case of boundary conditions, for simplicity we restrict the
model to the description of clamped structures loaded by volume forces and subject to volume
distributed electric charges. Assuming a synchronous harmonic excitation of a single frequency
ω

f̃(x, t) = f(x)eiωt , q̃(x, t) = q(x)eiωt ,

where f = (fi), i = 1, 2, 3 is the magnitude field of the applied volume force and q is the mag-
nitude of the distributed volume charge, in general, we should expect a dispersive piezoelectric
field with magnitudes (uε, ϕε)

ũε(x, ω, t) = uε(x, ω)eiωt , ϕ̃ε(x, ω, t) = ϕε(x, ω)eiωt .

This allows us to study the steady periodic response of the medium, as characterized by field
(uε, ϕε) which satisfies the following boundary value problem:

−ω2ρεuε − divσε = f in Ω,

−divDε = q in Ω,

uε = 0 on ∂Ω,

ϕε = 0 on ∂Ω,

(2)

where the stress tensor σε = (σε
ij) and the electric displacement Dε are defined by constitutive

laws

σε
ij = cεijklekl(uε)− gε

kij∂kϕ
ε,

Dε
k = gε

kijeij(uε) + dε
kl∂lϕ

ε.
(3)
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The problem (2) can be weakly formulated as follows: Find (uε, ϕε) ∈ H1
0(Ω) × H1

0 (Ω) such
that

−ω2

∫
Ω

ρεuε · v +

∫
Ω

cεijklekl(uε)eij(v)−
∫

Ω

gε
kijeij(v)∂kϕ

ε =

∫
Ω

f · v ,∫
Ω

gε
kijeij(uε)∂kψ +

∫
Ω

dkl∂lϕ
ε∂kψ =

∫
Ω

qψ ,

(4)

for all (v, ψ) ∈ H1
0(Ω)×H1

0 (Ω).

3. Homogenized model of waves in piezo-elastic composite

Problem (4) was studied in Avila et.al. (2008) using the unfolding method of homogenization
to obtain a limit model when ε → 0. Here the aim is to report how the numerical analysis
of the band gaps based on the stationary waves corresponds with long guided waves and the
classical form of the dispersion diagrams. Therefore we just record the theoretical results from
(Rohan and Miara, 2006-B). We remark that the spirit of the homogenization was explained
exhaustively in (Rohan et.al., 2009) for the case of elastic composites. In our present application
the differences are:

• in analysis of the eigen-solutions related to the “soft” inclusion – piezoelectric materials
couples elastic deformations with induced electric field;

• the homogenized material piezoelectric properties involve elasticity, piezo-coupling and
dielectricity tensors; these are determined by the perforated matrix exclusively, as well as
in the purely elastic case;

• the macroscopic model of piezo-elastic wave propagation involves coupled system of the
balance-of-forces equation and the electric field conservation.

For brevity in what follows we employ the following notations:

aY2 (u, v) =

∫
Y2

c2ijkle
y
kl(u) ey

ij(v),

dY2 (φ, ψ) =

∫
Y2

d2
kl∂

y
l φ ∂

y
kψ,

gY2 (u, ψ) =

∫
Y2

g2
kije

y
ij(u) ∂y

kψ,


Y2 (u, v) =

∫
Y2

ρ2u · v,

(5)

whereby analogical notations are used when the integrations apply over Y1.

3.1. Auxiliary eigenvalue problem

The auxiliary eigenvalue problem arises due to linearity – the displacement and electric potential
fields waves are expanded in series based on the eigen-solution of the associated piezo-elastic
problem. This represents vibrations of the piezo-material in inclusion Y2 with clamped bound-
ary ∂Y2; the material is electrically insulated on ∂Y2.
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Particular solution Let us define ϕ2P = q(x)p̃(y) where p̃ ∈ H1
0 (Y2) is the unique solution

satisfying

dY2 (p̃, ψ) =

∫
Y2

ψ ∀ψ ∈ H1
0 (Y2) ,

hence also dY2

(
ϕ2P , ψ

)
= q(x)

∫
Y2

ψ ∀ψ ∈ H1
0 (Y2) .

(6)

Spectral problem The spectral problem reads as: find eigenelements [λr; (zr, pr)], where
zr ∈ H1

0(Y2) and pr ∈ H1
0 (Y2), r = 1, 2, . . . , such that

aY2 (zr, v)− gY2 (v, pr) = λr
Y2 (zr, v) ∀v ∈ H1
0(Y2),

gY2 (zr, ψ) + dY2 (pr, ψ) = 0 ∀ψ ∈ H1
0 (Y2),

(7)

with the orthonormality condition imposed on eigenfunctions zr:

aY2 (zr, zs) + dY2 (pr, ps) = λr
Y2 (zr, zs)
!
= λrδrs. (8)

The orthogonality in (8) follows easily on rewriting (7) for v = zs and ψ = pr,

aY2 (zr, zs)− gY2 (zs, pr) = λr
Y2 (zr, zs) ,

gY2 (zs, pr) + dY2 (ps, pr) = 0,

so that on eliminating gY2 (zs, pr) one obtains

aY2 (zr, zs) + dY2 (ps, pr) = λr
Y2 (zr, zs)

!
= λs
Y2 (zs, zr) .

Moreover, the ellipticity of aY2 (·, ·) and dY2 (·, ·) yields λr > 0 for all r = 1, 2, . . . .

Perturbations in the inclusion. Using the above auxiliary problems the relative motion and
electric field fluctuations in Y2 can be described; these are described by functions u2(x, y) and
ϕ2(x, y). With the eigenelements (zr, pr) defined in (7)-(8) and having computed ϕ2P we have
the decomposed form

u2(x, y) =
∑
r≥1

αr(x)zr(y) ,

ϕ2(x, y) = ϕ2H + ϕ2P =
∑
r≥1

αr(x)pr(y) + q(x)p̃(y) ,
(9)

where αr is expressed as follows:

αr =
1

λr − ω2

[
f(x) ·

∫
Y2

zr + ω2u1(x) ·
∫

Y2

ρ2zr + q(x)gY2 (zr, p̃)

]
. (10)

Rohan E., Cimrman R. #179

1095



3.2. Homogenized coefficients – macroscopic model

The macroscopic model of elastic waves in strongly heterogeneous piezoelectric composite
involves two groups of the homogenized material coefficients:

• the homogenized coefficients depending on the incident wave frequency – these are re-
sponsible for the dispersive properties of the homogenized model. This group of the
coefficients pridano depends just on the material properties of the inclusion (except the
material density, which is averaged over entire Y )

• the second group of coefficients is related exclusively to the matrix compartment – it
determines the macroscopic piezo-elastic properties.

Frequency–dependent coefficients It should be stressed out that the dispersion arises from
the inertia in Y2 represented by the fluctuating field u2, see (11) below. Due to the auxil-
iary eigenvalue problems and (9) it can be expressed in terms of the macroscopic quantities
(u(x), q(x), f(x)) representing the local amplitudes of displacements, electric charge and vol-
ume force, respectively; denoting ∼∫ = 1

|Y |
∫

, the following holds

∼
∫

Y2

ρ2u2 =
∑
r≥1

1

λr − ω2

[
f(x) ·

∫
Y2

zr⊗ ∼
∫

Y2

ρ2zr

+ω2u(x) ·
∫

Y2

ρ2zr⊗ ∼
∫

Y2

ρ2zr + q(x)gY2 (zr, p̃) ∼
∫

Y2

ρ2zr

]
,

(11)

We introduce the eigenmomentum mr = (mr
i ),

mr =

∫
Y2

ρ2zr.

Due to (11) the following tensors are introduced, all depending on ω2:

• Mass tensor M∗ = (M∗
ij)

M∗
ij(ω

2) =∼
∫

Y

ρδij − 1

|Y |
∑
r≥1

ω2

ω2 − λr
mr

im
r
j ; (12)

• Applied load tensor B∗ = (B∗
ij)

B∗
ij(ω

2) = δij − 1

|Y |
∑
r≥1

ω2

ω2 − λr
mr

i

∫
Y2

zr
j ; (13)

• Applied charge tensor Q∗ = (Q∗
i )

Q∗
i (ω

2) = − 1

|Y |
∑
r≥1

ω2

ω2 − λr
mr

igY2 (zr, p̃) . (14)

Engineering Mechanics 2009, Svratka, Czech Republic, May 11 – 14

1096



Coefficients related to the perforated matrix domain As mentioned above, the second
group of the homogenized coefficients is defined independently of the inclusions material.
In other words, the elasticity C∗

ijkl, piezoelectricity G∗
kij and dielectricity D∗

kl homogenized
coefficients can be recovered in the same form which is defined for periodically perforated
piezoelectric material. Below we summarize the results which follow as consequences of the
homogenization treated in Miara, Rohan et.al. (2005) for a piezoelectric bi-phasic composite.

In order to compute C∗, G∗ and D∗, we must solve the local microscopic problems for the
corrector functions; these are now listed.

1. Find (χij, πij) ∈ H1
#(Y1)×H1

#(Y1), i, j = 1, . . . , 3 such that{
aY1

(
χij + Πij, v

)− gY1 (v, πij) = 0 , ∀v ∈ H1
#(Y1) ,

gY1

(
χij + Πij, ψ

)
+ dY1 (πij, ψ) = 0 , ∀ψ ∈ H1

#(Y1) ,
(15)

where Πij = (Πij
k ) = (yjδik);

2. Find (χk, πk) ∈ H1
#(Y1)×H1

#(Y1), i, j = 1, . . . , 3 such that{
aY1

(
χk, v

)− gY1

(
v, πk + Πk

)
= 0 , ∀v ∈ H1

#(Y1) ,
gY1

(
χk, ψ

)
+ dY1

(
πk + Πk, ψ

)
= 0 , ∀ψ ∈ H1

#(Y1) ,
(16)

where Πk = yk.

Using the corrector basis functions just defined we compute the homogenized coefficients:

C∗
ijkl =

1

|Y |
[
aY1

(
χkl + Πkl, χij + Πij

)
+ dY1

(
πkl, πij

)]
,

D∗
ki =

1

|Y |
[
dY1

(
πk + Πk, πi + Πi

)
+ aY1

(
χk, χi

)]
, (17)

G∗
kij =

1

|Y |
[
gY1

(
χij + Πij, Πk

)
+ dY1

(
πij, Πk

)]
.

The homogenized coefficients are involved in the macroscopic (global) equations; we find
(u, ϕ) ∈ H1

0(Ω)×H1
0 (Ω) such that

− ω2

∫
Ω

(M∗(ω2) · u) · v

+

∫
Ω

C∗
ijklekl(u) eij(v)−

∫
Ω

G∗
kijeij(v) ∂kϕ =

=

∫
Ω

(B∗(ω2) · f) · v +

∫
Ω

qQ∗(ω2) · v ∀v ∈ H1
0(Ω) ,

and ∫
Ω

G∗
kijeij(u) ∂kψ +D∗

kl∂lϕ∂kψ =

∫
Ω

q ψ ∀ψ ∈ H1
0 (Ω) .

(18)

This variational formulation is associated with the strong formulation, which can easily be
obtained from (18) on integrating there by parts. Classical solution (u, ϕ) must satisfy the
following equations imposed in domain Ω:
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ω2M∗
ij(ω

2)u1
j + ∂j

(
C∗

ijklekl(u)−G∗
kij∂kϕ

)
= −B∗

ij(ω
2)fj − qQ∗

i (ω
2) ,

∂k

(
G∗

kijeij(u) +D∗
kl∂lϕ

)
= q ,

(19)

where u = 0 and ϕ = 0 on ∂Ω.
As an important feature of the limit macroscopic equations, its inertia term is defined in

terms of the ω-dependent homogenized mass tensor M∗
ij . It was proved in Avila et.al. (2008)

for the elastic media that there exist intervals of frequencies for which the limit problem admits
only an evanescent solution; these intervals are called the acoustic band gaps. More precisely,
such intervals are indicated by negative definiteness, or negative semi-definiteness of M∗

ij(ω
2);

while the first case does not admit any oscillating solution, in the latter one the admissibility of
an oscillating response depends on the assumed direction of amplitudes of propagating waves.
Thus, some frequencies may result in a strongly anisotropic behaviour of the homogenized
medium. Similar conclusions can be derived also in the present situation with the piezoelectric
coupling.

Figure 2: Distribution of the weak band gaps (white strips) for the piezoelectric composite. The
curves correspond to eigenvalues of the mass tensor M∗(ω).
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3.3. Band gaps

In the context of our homogenization-based modelling of phononic materials, the band gaps are
frequency intervals for which the propagation of waves in the structure is disabled or restricted
in the polarization.

The band gaps can be classified w.r.t. the polarization of waves which cannot propagate.
Given a frequency ω, there are three cases to be distinguished according to the signs of eigen-
values γr(ω), r = 1, 2, 3 (in 3D), which determine the “positivity, or negativity” of the mass:

1. propagation zone – all eigenvalues of M∗
ij(ω) are positive: then homogenized model

(19) admits wave propagation without any restriction of the wave polarization;

2. strong band gap – all eigenvalues of M∗
ij(ω) are negative: then homogenized model (19)

does not admit any wave propagation;

3. weak band gap – tensor M∗
ij(ω) is indefinite, i.e. there is at least one negative and one

positive eigenvalue: then propagation is possible only for waves polarized in a manifold
determined by eigenvectors associated with positive eigenvalues. In this case the notion
of wave propagation has a local character, since the “desired wave polarization” may
depend on the local position in Ω.

For detailed discussion on computing the band gaps for elastic homogenized structures we
refere to Avila et.al. (2008); Rohan et.al. (2009). In Fig. 2 we illustrate weak band gap distribu-
tion for piezoelecric composite formed by matrix PZT5A with embedded spherical inclusions
made of BaTiOx3, where the scale parameter correction was by ε = 0.01; the procedure of
rescaling the physical material parameter in the context of assumed scaleing ansatz in (1) was
discussed in (Rohan et.al., 2009) for elastic composits, the principle remains valid also for
piezoelectric structures.

3.4. Dispersion analysis

We consider guided waves propagating in the heterogeneous medium. For propagation of long
waves we proposed in (Rohan et.al., 2009) to analyze the dispersion curves using the homoge-
nized model, although this was developed for stationary waves. Such an approximate modeling
is valid for a large difference in the elasticity and other piezoelectric parameters between the
two compartments.

Usually the band gaps are identified from the dispersion diagrams. For the homogenized
model the dispersion of guided plane waves is analyzed in the standard way, using the following
ansatz:

u(x, t) = ū e−i(ωt−xjκj) ,

ϕ(x, t) = ϕ̄ e−i(ωt−xjκj) ,
(20)

where ū is the displacement polarization vector (the wave amplitude), ϕ̄ is the electric potential
amplitude, κj = njκ, |n| = 1, i.e. n is the incidence direction, and κ is the wave number. The
dispersion analysis consists in computing nonlinear dependencies ū = ū(ω) and κ = κ(ω); for
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Figure 3: Illustration of the dispersion analysis output for the piezoelectric composite. The
dispersion curves κβ(ω) computed according to (25). In the weak band gaps (white strips)
analyzed according to Figure 2 waves can propagate in one or two directions only. In the 2nd
band only one polarization passes, the phase velocity determined by the blue curve, in the 1st
band gap two polarization can propagate. In the “full propagation zones” (green) three curves
correspond to three wave polarizations.

this one substitutes (20) into the homogenized model (19) with zero r.h.s.

−ω2M∗
ij(ω

2)uj − C∗
ijkl

∂2uk

∂xj∂xl

+G∗
kij

∂2ϕ

∂xj∂xk

= 0 ,

G∗
kij

∂2ui

∂xk∂xj

+D∗
kl

∂2ϕ

∂xk∂xl

= 0 ,

(21)

thus on introducing

Γik = C∗
ijklnjnl , the standard Christoffel acoustic tensor,

γi = G∗
kijnjnk ,

ζ = D∗
klnlnk ,

(22)

we obtain

−ω2M∗
ij(ω

2)ūj + κ2 (Γikūk − γiϕ̄) = 0 ,

κ2 (γkūk + ζϕ̄) = 0 .
(23)
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In (23) we can eliminate ϕ̄ (assuming κ2 
= 0), thus the dispersion analysis reduces to the
“elastic case” where the acoustic tensor is modified:

−ω2M∗
ij(ω

2)ūj + κ2Hikūk = 0 ,

where Hik = Γik + γiγk/ζ .
(24)

The dispersion is analyzed in terms of the following problem:

• for all ω ∈ [ωa, ωb] and ω 
∈ {λr}r compute eigenelements (ηβ,wβ):

ω2M∗
ij(ω

2)wβ
j = ηβHikw

β
k , β = 1, 2, 3 ; (25)

• if ηβ > 0, then κβ =
√
ηβ ,

• else ω falls in an acoustic gap, wave number is not defined.

In heterogeneous media in general the polarizations of the two waves (outside the band
gaps) are not mutually orthogonal, which follows easily from the fact that {wβ}β are M∗(ω2)–
orthogonal. Moreover, in the presence of the piezoelectric coupling, which introduces another
source of anisotropy, the standard orthogonality is lost even for heterogeneous materials with
“symmetric inclusions” (circle,hexagon, etc.), in contracst with elastic structures where these
designs preserve the standard orthogonality.

4. Conclusion

The purpose of the paper was to present an extension of the homgenization-based modeling
adapted from Rohan et.al. (2009) to the piezoelectric phononic materials.

The principal ingredient of the homogenization procedure is the scale dependence of the
elastic coefficients in the mutually disconnected inclusions - this leads to acoustic band gaps
due to the negative effective mass phenomenon appearing in the upscaled model. From the
point of the mathematical model, the main difference between the elastic and the piezoelectric
homogenized phononic materials is the eigenvalue problem – in the latter case there arises the
constraint related to the induced electric field.

The main advantage of the homogenization based two-scale modeling lies in the fact, that
the homogenization based prediction of the band gap distribution for stationary or long guided
waves is relatively simple and effective, cf. Rohan et.al. (2009), in comparison with the “stan-
dard computational approach” based on a finite scale heterogeneous model, which requires to
evaluate all the Brillouin zone for the dispersion diagram reconstruction; as the consequence, it
leads to a killing complexity.

The further research in this field will face the following tasks:

• modeling validation – the band gap prediction provided by the homogenized model will
be compared with prediction computed on the non-homogenized medium for a given scale
of heterogeneities, cf. Sigmund and Jensen (2003); similar study was reported in Rohan
et.al. (2009) for the elastic situation.

• numerical study of the piezoelectric inclusion shape and polarization influence on the
dispersion properties; similar studies were reported for the elastic case, showing its sig-
nificant importance.
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• optimal design of the piezo-phononic material; the research related to the sensitivity anal-
ysis was published in (Rohan and Miara, 2006-B),(Rohan and Miara, 2006-C) in the con-
text of shape sensitivity at the microscopic level (reference cell Y and the inclusion Y2).

• modeling of more complicated microstructures w.r.t. their topology, i.e. multiple disjoint
inclusions with “different orientations”, or embedded inclusions, see Cimrman and Rohan
(2009) for the elastic case. We expect that the topology of the “microstructural arrange-
ment” of the composite may have remarkable influence on the dispersion properties.
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