
 TRAVELLING WAVES IN ROTATIONAL MACHINES 

 L. Půst, L. Pešek 1

Summary: This paper is concerned with vibrations of stationary or rotating disk 
as a simplified model of real bladed turbine disk. Two types of disks are 
investigated: perfect rotational disk with the same dynamic properties in all 
radial directions and imperfect disk having different dynamic properties in two 
independent modes of vibration. Presented study is first part of theoretical 
analysis intended as a background for evaluation method used in experimental 
research of vibrations of bladed disk in real rotational machines or their models. 

1. Introduction
Travelling wave is one of the many various forms of vibrations of mechanical systems. It is 
typical of rotation form of vibration, which can be produced not only by rotating excitation, 
but in some special causes by fixed standing excitation. 

Travelling waves were recorded mainly in circular machine elements as turbine disks, saw 
blades, computer floppy and hard disks, geared disks, cylindrical shells, circular rings and 
diaphragms [1-7], but can exists also in non-circular elements as square-shaped plates and 
membranes having pairs of equal or very near lying eigenfrequencies with similar modes [4]. 
However the most important and also dangerous cases of travelling waves in mechanical 
engineering are connected with vibrations of rotating disks of steam or gas turbines. Lot of 
articles were published in recent years e.g. [5,6,8-10] both for simple disks and for bladed 
disks. 

Presented paper is a contribution to the problems of travelling waves of bladed disk aimed 
particularly as a theoretical background for analysis of results of measurement on the 
experimental model in laboratories IT-AS CR.  

Sixty prismatic models of blades were fastened on the perimeter of investigated model of 
steel disk with diameter 505 mm. The disk is fixed in the centre 0. Two groups of five blades 
lying on opposite ends of a diameter identical with axis y are provided by heads with dry 
friction elements, Fig. 1. 

Due to this imperfection in distribution of mass, the free oscillations with the same number 
of nodal diameters and nodal circles, once with a node line going through this imperfection 
and other time with maximum amplitude (antinode), have different frequencies. 

Frequence-difference is roughly proportional to the imperfection. For exact rotation form 
of disk without any added mass, the disk has double frequencies, each with two different 
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Fig. 1 
modes of oscillation. An example of oscillations modes of free circular ring is shown in 

Fig. 2. In the three columns are modes of three eigenfrequencies Ω1, Ω2, Ω3 of cylindrical 
ring. To each of these frequencies belong two orthogonal eigenmodes with modal points 
shifted at n2/πϕ =  (n = 1,2.3). If a small mass is added in point A, the eigenfrequencies of 
the upper row a) would be smaller than those of bottom row b). Existence of these pairs of 
eigenmodes enables to excite travelling waves. Similar dynamic properties has also the 
circular disk and bladed disk. 

Fig. 2 

2. Travelling waves – stationary disk 
Free transverse vibrations of circular perfect disks fixed at their centers have modes 
containing n nodal diameters and l nodal circles as shown in Fig. 3. 
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Fig. 3 

The forms of vibrations with amplitude a are described by 
,)(sin)(),( αϕϕ += nrafrz l        (1) 

where )(,22 rfyxr l+=  denotes the form of vibration in the radial direction. Roots rl of 

equation  
  0)( =rfl          (2) 

give the radii of nodal circles. Values of parameter α ascertain the position of nodal diameters. 
Value α = 0 corresponds to the nodal diameters in upper row a) in Fig. 3, value α = π/(2n) to 
the position of nodal lines in bottom row b). Proper initial conditions in time t = 0 produce the 
combination of both eigenmodes with common eigenfrequency Ωnl of the undamped disk: 

)cos(cos)()cos(sin)(),,( bnllbanlla tnrfatnrfatrz ϕϕϕϕϕ +Ω++Ω=    (3) 

This motion contains both eigen oscillations of a) and b) forms and also a component of 
travelling wave, which is composed of parts of forms a) and b) with the same amplitudes 

).sin()(
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Traveling wave in undamped disk have the form 

,)/(sin)(),( nnrfarz ttt ϕϕϕ +=       (5) 

which rotate on the disk by angular frequency 

  
ndt

d nlΩ
=ϕ

  or  
ndt

d nlΩ
−=ϕ

       (6) 

according to the values of initial conditions. However a damping in real disk makes a quick 
decay of these free travelling wave oscillations. 
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Only travelling external force can excite travelling waves in perfect damped circular disk. 
The nodal diameters travel then according to the force rotation. Stationary harmonic force 
excites non-travelling oscillations in perfect disk. 

Another situation originates when the disk has small imperfection, caused e.g. by added 
mass on the periphery. This is the case of bladed disk shown in Fig. 1. Simplified scheme of 
disk fixed in center and with nodal diameters of n = 2, l = 0 is in Fig. 4.  

Fig. 4 

Positions of nodal diameters are now determined by positions of small added masses m. 
There is no double frequency Ω20 as in Fig. 3 for perfect disk but due to the imperfection this 
frequency splits into two close frequencies Ω2a and Ω2b belonging to two modes of vibration 
with different modal diameters: the higher Ω2a with masses m on the nodal diameters and the 
lower Ω2b where the masses m vibrate in antinode position – nodal lines are dashed. 

If general initial conditions are applied to this imperfect disk the resulting vibrations are 
very complicated. Internal or/and external damping attenuates these free oscillations to zero 
and no stationary travelling wave exists. 

Let us apply an external harmonic transverse force tF ωcos0  in one point given by angle 

λ on the periphery of the linearly damped imperfect disk. If the exciting frequency ω is close 
to eigenfrequencies Ω2a and Ω2b, corresponding components predominate over other non-
resonant components and the response can be described only by these two modes of 
vibrations. 

The amplitudes za, zb of these components can be expressed by means of the procedure 
described in [1,5] in the forms 
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where )(rfKa and )(rfKb  are functions depending on the structure and mass distribution of 

bladed disk, λ is angle ascertaining point of exciting force application, Ωa and Ωb are split 
eigenfrequencies, ba, bb damping coefficients and phase angles for each mode are  

  .tan,tan
22
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ω
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= −−
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b
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bb
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For simplicity we can assume that ., bbbKKK baba ====
Dimensionless forms of equations (7), (8) are 
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=  are dimensionless local amplitudes (i = a,b), 
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=κ  is ratio of split eigenfrequencies and 
a

b

Ω
=β , aΩ= /ωη .  (9a) 

If the force tF ωcos0 acts on the end of diameter a) (λ = 0), the eigenmode with lower 

frequency Ωb with nodes b is excited. If the force acts on nodal diameter b) i.e. if λ = π/4, 
eigenmode with higher frequency Ωa with nodes a originate. Response for forces in positions 
λ = π/16, π/8 and π3/16 and for κ = 0.97, β = 0.02 are shown in Fig. 5, where both components 
of vibrations are excited and their amplitudes are 
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Corresponding phase shift angles aψ  and bψ  are independent on the position of exciting 

force defined by angle λ, as seen from the bottom row of subfigures in Fig. 5. 
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Fig. 5 
In the next Fig. 6 are shown only response curves for the same values of κ = 0.97, β = 0.02 

and for the extended range λ = 0 – π/4 but without phase shift angles. The increase of 
amplitude Aa of mode a versus dimensionless frequency η and decrease of Ab (mode b, 
frequency ηb = κ = Ωa /Ωb) is quite evident. 

Fig. 6 
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The complete response of disk on exciting force consists of sum of both components: 
=−+−=+= )cos(2cos)cos(2sin bbaaba tAtAZZZ ψωϕψωϕ     (11) 
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where the arguments )2( tωϕ ± signify the existence of travelling waves. 
After rearrangement (11) we get 
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Amplitudes Ar- resp. Ar+ belong to the partial travelling waves with angular velocities  

   
2

ωϕ −=
dt

d
  resp.  

2

ωϕ +=
dt

d
 .      (13) 

Positive and negative velocities 2/ω±  are marked by arrows in Fig. 4. Response curves of 
amplitudes Ar+(η) resp. Ar-(η) are plotted in Fig. 7 by solid resp. dashed lines.

Fig. 7 

Půst L., Pešek L. #239

1071



Sum or difference of these curves (however considering phase angles ε- and ε+) gives ei-
ther stationary vibrations (λ = 0, λ = π/4) or combination of stacionary vibrations and travel-
ling wave (0< λ< π/4). 

That kind of motion excited by harmonic force in angle position λ is described in the 
form 

,)22cos()cos()22cos( 0 ttravstac tAtAZ ψωλϕψωλϕ +−−+−−=    (14) 

where parameters of stationary vibrations Astac, sψ and of travelling wave Atrav, tψ are not yet 

known. From comparison with the second row of equation (11) we get after small adaptation 
[ ]+++ )sinsincos)(cos2sin2sin)2cos2(cos ssstac ttA ψωψωλϕλϕ      
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Further comparisons multiplied by tttt ωϕωϕωϕωϕ sin2sin,cos2sin,sin2cos,cos2cos
give four equations: 

bbttravttravsstac AAAA ψλψλψλψ cos2sinsin2coscos2coscos =++

bbttravttravsstac AAAA ψλψλψλψ sin2cossin2sincos2cossin =+−   (16) 

aattravttravsstac AAAA ψλψλψλψ cos2cossin2sincos2sincos =−+

aattravttravsstac AAAA ψλψλψλψ sin2sinsin2coscos2sinsin =++  , 

from which the four unknown quantities sstacA ψcos , sstacA ψsin , ttravA ψcos , ttravA ψsin , 

resp. tstravstac AA ψψ ,, , can be calculated. 

Results of these operations are seen in Fig. 8, where by solid lines are plotted response 
curves of stationary vibrations Astac(η) and by dashed lines those of travelling waves Atrav(η). 

Fig. 8 
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Similar results we get by applying this procedure also for other mode of vibrations Fig. 3 
for nodal diameters n = 1,3,4,… and nodal circles l = 0,1,2….. 

3. Rotating disk 
Dynamical properties of rotating both perfect an imperfect disk with constant angular speed 
ν  are similar to those of stationary disk. The modes of vibrations have n nodal diameters and 
l nodal circles (Fig. 3) but the eigenfrequencies increase with increasing angular velocity ν : 

2
0,,, νclnln +Ω=Ω . This change of frequency is neglected for simplicity in the following 

analysis. However the response on the excitation force differs from the stationary case. 
Two coordinate systems have to be used: 1) a fixed one r, aϕ  connected with the standing 

space, and 2) other coordinates connected to the rotating disk. Relation ta νϕϕ +=  is valid 

for initial situation aϕϕ =  at t = 0. 

Let a harmonic force tF ωcos0  at 0=aϕ  in the fixed coordinate system acts on rotating 

perfect disk with angular velocity 20, Ω≈ων  in the negative direction ϕ . This force excites 

in the disk (coordinates 2) both modes of vibrations a) and b) (see Fig. 3). Position of force 
marked tνλ −=  increases in disk coordinates linearly with time. 

Vibration of rotating perfect disk (κ = 1) with two nodal diameters (n = 2, l = 0) can be 
described using modified formula (9), (9a) by equations 
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where  redredred cbm ,,  are reduced values masses, damping and stiffness.
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The functions on the right sides of equations (19) are complicated functions of time – 
product of two harmonic functions. For simple solution of stationary forced vibrations it is 
convenient to transform these expressions into sum of terms containing just only one 
harmonic function of time: 
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Solution (19) after introduction (20) gives 
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The phase angles are  
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For graphical representation of these decomposition, the time history of equation (20) for 
6,0 == ωϕ and 2=ν  is shown in Fig. 9. The input force excitation with angular frequency 

6=ω  is drawn in the first row a). Its product with )2cos( tν  corresponding to the running of 
excitation force on the disk with angular frequency 2=ν  is recorded in second row b). 
Bottom two curves c), d) give harmonic components of the signal b). 
Response of rotating disk on the excitation components contain the same harmonic 
components c), d) but their magnitudes are influenced by the dynamic amplification 
coefficients different for )2( νω +  and )2( νω − . These amplification coefficients depend for 

perfect disk on common eigenfrequency 20Ω  (n = 2, l = 0) and on damping β. 

Fig. 9 

There dynamic amplification coefficients are 

for )2( νω + :   2222
20

2
20 )2()2((/ νωβνω +++−ΩΩ

          (23) 

  for )2( νω − :   2222
20

2
20 )2()2((/ νωβνω −+−−ΩΩ

The entire response of rotating disk on space fixed harmonic excitation tF ωcos0 with 

increasing excitation frequency can be ascertained after connected both components (21) into 
one expression. 
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Let us choose disk eigenfrequency 25020 =Ω  and damping 10=β , speed of disk rotation 

let be 20=ν . Time histories of both components ua and ub are shown in Fig. 10 for exciting 
frequency 210=ω  and in Fig. 11 for frequency 290=ω , all in one point the disk at 0=ϕ .  

In the first case, the component ua with frequency  

1
20 21020.22502 −=−=−Ω= sνω       (25a) 

comes into resonance (Fig. 10), in the second case the component ub with frequency 

  1
20 29020.22502 −=+=+Ω= sνω       (25b) 

is in resonance as seen in Fig. 11. 

Fig. 10 
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Fig. 11 

The speed ν of disk rotation influences frequency position of resonance peaks. This effect 
is demonstrated in Fig. 12, where a set of response curves at constant 25020 =Ω , 10=β  and 

at different disk speed 150 −=ν  step 2.5 is drawn in excitation frequency range 
1300,200 −〉〈= sω . Non-rotating disk has only one resonance at 1250 −= sω . Disk rotation 

splits this resonance peak into two peaks, which shift to the lower and higher frequencies. It is 
caused by existence of two travelling waves in rotating disk excited in space fixed point. 

Fig. 12 

Engineering Mechanics 2009, Svratka, Czech Republic, May 11 – 14

1076



4. Conclusion 
It has been shown that in the circular disk fixed its centre exist double eigenfrequencies with 
two orthogonal modes of vibrations. Nodal diameters are arbitrary at perfect disks, but have 
fixed position at imperfect disks. Analysis of dynamic properties of non-rotating imperfect 
linearly damped disk excited by an external harmonic transversal force tF ωcos0  shows the 

existence of travelling waves, which intensity depends on the position of point of force 
application. Detail analysis was focused on the modes with two modal diameters. Response of 
stationary perfect disk on harmonic excitation is only stationary oscillation without any 
travelling waves. 

 Response of rotating disk both perfect or imperfect (speed ν) harmonically excited in fixed 
point in space contains always travelling waves. Analysis focused on the frequency range near 
the resonance of mode with two nodal diameters proves the existence of two resonances split 
due to the travelling waves.  

Presented study is a contribution to the theoretical support of experimental research of 
rotating model of bladed disk carried out in our Institute. The future extension of this 
theoretical analysis will include the investigation of nonlinear elastic and damping properties 
of rotating disk, as well as the influence of elastic, mass and damping imperfections on the 
dynamic behaviour of rotating disk. 
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