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TRAVELLING WAVESIN ROTATIONAL MACHINES
L. Past, L. Pesek !

Summary: This paper is concerned with vibrations of stationary or rotating disk
as a smplified model of real bladed turbine disk. Two types of disks are
investigated: perfect rotational disk with the same dynamic properties in all
radial directions and imperfect disk having different dynamic properties in two
independent modes of vibration. Presented study is first part of theoretical
analysis intended as a background for evaluation method used in experimental
research of vibrations of bladed disk in real rotational machines or their models.

1. Introduction

Travelling wave is one of the many various forms of vibrations of mechanical systems. It is
typical of rotation form of vibration, which can be produced not only by rotating excitation,
but in some special causes by fixed standing excitation.

Travelling waves were recorded mainly in circular machine elements as turbine disks, saw
blades, computer floppy and hard disks, geared disks, cylindrical shells, circular rings and
diaphragms [1-7], but can exists also in non-circular elements as square-shaped plates and
membranes having pairs of equal or very near lying eigenfrequencies with similar modes [4].
However the most important and also dangerous cases of travelling waves in mechanical
engineering are connected with vibrations of rotating disks of steam or gas turbines. Lot of
articles were published in recent years e.g. [5,6,8-10] both for smple disks and for bladed
disks.

Presented paper is a contribution to the problems of travelling waves of bladed disk aimed
particularly as a theoretical background for analysis of results of measurement on the
experimental model in laboratories IT-AS CR.

Sixty prismatic models of blades were fastened on the perimeter of investigated model of
steel disk with diameter 505 mm. The disk is fixed in the centre 0. Two groups of five blades
lying on opposite ends of a diameter identical with axis y are provided by heads with dry
friction elements, Fig. 1.

Due to this imperfection in distribution of mass, the free oscillations with the same number
of nodal diameters and nodal circles, once with a node line going through this imperfection
and other time with maximum amplitude (antinode), have different frequencies.

Frequence-difference is roughly proportional to the imperfection. For exact rotation form
of disk without any added mass, the disk has double frequencies, each with two different
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modes of oscillation. An example of oscillations modes of free circular ring is shown in
Fig. 2. In the three columns are modes of three eigenfrequencies Q,, Q,, Q3 of cylindrical
ring. To each of these frequencies belong two orthogonal eigenmodes with modal points
shifted at ¢ =7z /2n (n=1,2.3). If asmall massis added in point A, the eigenfrequencies of
the upper row a) would be smaller than those of bottom row b). Existence of these pairs of
eigenmodes enables to excite travelling waves. Similar dynamic properties has aso the
circular disk and bladed disk.

Fig. 2

2. Travelling waves — stationary disk
Free transverse vibrations of circular perfect disks fixed at their centers have modes
containing n nodal diametersand | nodal circles as shown in Fig. 3.
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" b) - b)
Fig. 3
The forms of vibrations with amplitude a are described by
z(r,p) = af (r)sinn(g+a) (1)
where r =+/x*+y?, f,(r) denotes the form of vibration in the radial direction. Roots r; of
equation
fi(r)=0 )
give theradii of nodal circles. Values of parameter o ascertain the position of nodal diameters.
Vaue a = 0 corresponds to the nodal diameters in upper row a) in Fig. 3, value a = ©/(2n) to

the position of nodal linesin bottom row b). Proper initial conditionsin timet = 0 produce the
combination of both eigenmodes with common eigenfrequency Qp of the undamped disk:

z(r,p,t) =a, f (r)sinnpcos(Qt+ ¢,) + a, f, (r)cosngcos(Q ,t + ¢,) (©))

This motion contains both eigen oscillations of &) and b) forms and also a component of
travelling wave, which is composed of parts of forms @) and b) with the same amplitudes

z.(r,p,t)=a, f(r)snnpcos(Q t+¢,)+a f(r)cosnpsin(Q t+¢,) =

=a f(r)sn(np+Q t+¢,). )
Traveling wave in undamped disk have the form
z(r.p)=af(r)snn(p+¢, /n), ©)
which rotate on the disk by angular frequency
dp _Qy o do_ Qn ®)

at n dt n
according to the values of initial conditions. However a damping in real disk makes a quick
decay of these free travelling wave oscillations.
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Only travelling external force can excite travelling waves in perfect damped circular disk.
The nodal diameters travel then according to the force rotation. Stationary harmonic force
excites non-travelling oscillations in perfect disk.

Another situation originates when the disk has small imperfection, caused e.g. by added
mass on the periphery. Thisis the case of bladed disk shown in Fig. 1. Simplified scheme of
disk fixed in center and with nodal diametersof n=2,1 =0isinFig. 4.

Fig. 4

Positions of nodal diameters are now determined by positions of small added masses m.
There is no double frequency Qo asin Fig. 3 for perfect disk but due to the imperfection this
frequency splits into two close frequencies Q,, and Qo belonging to two modes of vibration
with different modal diameters: the higher Q,, with masses m on the nodal diameters and the
lower Qg Wwhere the masses m vibrate in antinode position —nodal lines are dashed.

If general initial conditions are applied to this imperfect disk the resulting vibrations are
very complicated. Internal or/and external damping attenuates these free oscillations to zero
and no stationary travelling wave exists.

Let us apply an external harmonic transverse force F, coswt in one point given by angle

A on the periphery of the linearly damped imperfect disk. If the exciting frequency w is close
to eigenfrequencies Q. and Q,, corresponding components predominate over other non-
resonant components and the response can be described only by these two modes of
vibrations.

The amplitudes z,, z, of these components can be expressed by means of the procedure
described in [1,5] in the forms

_ Kaf(r)sin2¢ Fosin24
8 =
\/(9321—602)2 b2 02
_ Ky f(r)cos2¢ Fycos24

J@2 - 02 +b50?

cos(wt —yg) ,

(7)

Zb COS(C()t - Wb) ’
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where K, f(r)and K f(r) are functions depending on the structure and mass distribution of

bladed disk, 4 is angle ascertaining point of exciting force application, Q5 and Qy are split
eigenfrequencies, b,, by damping coefficients and phase angles for each mode are

4 bw _ w
l//aztanlgza_wz’ l//b:tanlgtzf)iwz' )
a
For simplicity we can assumethat K, = K, =K, b, =b, =h.
Dimensionless forms of equations (7), (8) are
z,= 22092 coun-y,),
Ja-n?)? + p7 9
C0S2¢ COS24
Zo = 2 (gz 2 2COS(wt_Wb)’
V(K2 =n?)? + g7
—tant bn ’ —tant bn ’
Va 1_772 ¥y K‘Z _772
where
zQ2 o : :
P = KE ()F are dimensionless local amplitudes (i = a,b),
r)Fo
Q, . . o : b
K‘=Q— isratio of split eigenfrequencies and ,8=Q—, n=wlQ,. (99)
a a

If the force F,coswt acts on the end of diameter a) (4 = 0), the eigenmode with lower

frequency Qp with nodes b is excited. If the force acts on nodal diameter b) i.e. if 1 = /4,
eigenmode with higher frequency Q, with nodes a originate. Response for forces in positions
A =n/16, n/8 and #3/16 and for x = 0.97, = 0.02 are shown in Fig. 5, where both components
of vibrations are excited and their amplitudes are

A, = maxZ, = sin24 ,
Ja-n%)2+ %2 .
A = maxZp = cos24
- b=

Jx2 -2+ py?

Corresponding phase shift angles y, and w, are independent on the position of exciting
force defined by angle 4, as seen from the bottom row of subfiguresin Fig. 5.
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In the next Fig. 6 are shown only response curves for the same values of ¥ = 0.97, = 0.02
and for the extended range 1 = 0 — #/4 but without phase shift angles. The increase of
amplitude A, of mode a versus dimensionless frequency » and decrease of A, (mode b,
frequency np = k = Qa/Qyp) is quite evident.
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The complete response of disk on exciting force consists of sum of both components:

Z=27,+7Z,=A sn2¢pcos(wt -y ,)+ A, cos2pcos(awt —y,) = (11)

= A, Sin2¢p(coswt cosy , +sinatsiny ) + A, cos2¢(coswt cosy,, +Sinatsiny,) =

_ A, cosy, sin(2¢p — wt) ;s n(2¢ + wt) + A siny, cos(2¢ + a)t)2+ cos(2¢p — wt) N

+ A cosy, cos(2¢ + wt) ; cos(2¢ — wt) + A sy, —sin(2p - a)t)2+ sin(2p + wt) '
where the arguments (2¢ + wt) signify the existence of travelling waves.
After rearrangement (11) we get

Z =(Agcosy, + Ay Sinyy)/ 2* sin(2¢ + wt) +
+(=Aq siny 4 + A, cosyy ) [ 2* cos(2¢ + wt) + (12)

+(Aq COSYa — Ay sinyy) /2% Sin(2p — at) +
+(Ag Siny 4 + A, cosyy,) / 2* cos(2¢ — at) =
=\/A§ —2A A SIN(y, — ) + AL 1 2% cos(2p+ ot + £_) +

+ A2+ 28, A SNy, ) + A2 12% cos(2p— at + £,) =

=A_cos2p+wt+e_ )+ A, Cos(2p—wt+¢&,).
Amplitudes A,. resp. A+ belong to the partial travelling waves with angular velocities
de w de w
dt 2 &P dt 2 (13
Positive and negative velocities + w/ 2 are marked by arrowsin Fig. 4. Response curves of

amplitudes Ar+(77) resp. A..() are plotted in Fig. 7 by solid resp. dashed lines.
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Sum or difference of these curves (however considering phase angles ¢. and &.) gives e-
ther stationary vibrations (4 = 0, 1 = z/4) or combination of stacionary vibrations and travel-
ling wave (0< A< 7/4).

That kind of motion excited by harmonic force in angle position 1 is described in the
form

Z = Ay, COS(2¢9 — 21) cos(wt — ) + Aoy COS(20 — 24—t + ) , (14
where parameters of stationary vibrations Asac, ¥ and of travelling wave Ayay, i/, are not yet

known. From comparison with the second row of equation (11) we get after small adaptation
A,..[(cos2pcos21) + sin 2¢sin 21)(coswt cosy ¢ + Sinatsiny) |+

+ A, [(cos2pcoswt + sin 2psin wt) cos(24 -y, ) | +
+ A, [(sin2pcoswt — cos2psinwt) sin(24 -y, )| = (15)

= A, Sin2¢(coswt cosy, + sinawtsiny ) + A, cos2¢(coswt cosy,, + Sinwtsiny,) .
Further comparisons multiplied by cos2¢coswt, cos2gsinat, sin2¢coswt, Sin2¢sin wt
give four equations:
Ay, COSW COS2A + A, ,, COSY, COS2A + A,,, SINy, Sin24 = A cosy,
Ay SNy CoS24 — A,,, COSW, SIN24 + A, SiINy, C0S24 = A, Siny,, (16)
Ay COSy SIN24 + A,,, COSy, SIN24 — A, Siny, cos24 = A, cosy ,
Ay c SN SIN24 + A, COSY, COS2A + A,,, SNy, SIN24 = A, siny, ,
from which the four unknown quantities Ay, COSW, Ag.c SNWo, Apay COSY, Ara SNV,
resp. Agacr Arav, W, W, CanN be calculated.

Results of these operations are seen in Fig. 8, where by solid lines are plotted response
curves of stationary vibrations Aqac(17) and by dashed lines those of travelling waves Aga (7).
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Similar results we get by applying this procedure also for other mode of vibrations Fig. 3
for nodal diametersn =1,3,4,... and nodal circles| =0,1,2.....

3. Rotating disk

Dynamical properties of rotating both perfect an imperfect disk with constant angular speed
v are similar to those of stationary disk. The modes of vibrations have n nodal diameters and
| nodal circles (Fig. 3) but the eigenfrequencies increase with increasing angular velocity v :

Q1 =Q9 +cv?. This change of frequency is neglected for simplicity in the following
analysis. However the response on the excitation force differs from the stationary case.

Two coordinate systems have to be used: 1) afixed oner, ¢, connected with the standing
space, and 2) other coordinates connected to the rotating disk. Relation ¢ = ¢, +vt isvalid
for initial situation ¢ =@, at=0.

Let a harmonic force F,coswt a ¢, =0 in the fixed coordinate system acts on rotating
perfect disk with angular velocity v, @ = Q. inthe negative direction ¢ . Thisforce excites

in the disk (coordinates 2) both modes of vibrations @) and b) (see Fig. 3). Position of force
marked A4 =—vt increasesin disk coordinates linearly with time.
Vibration of rotating perfect disk (x = 1) with two nodal diameters (n = 2, | = 0) can be
described using modified formula (9), (9a) by equations
MreqGa + DroqUa + Cregda = KF (1) Fy COSat Sin 2¢ sin(2vt)

(17)
Mg Gy +0reg U + Creg O = Kf () Fy COsawt cos2¢ cos(2vt) ,
where m,,b,o,Creq &€ reduced values masses, damping and stiffness.
. qa,bmred 2 Cred bred
Introducing u,, = , Q5 =", f=—"T% (18)
* Kf (I’) I:0 0 Myeq Myeq
gives
U, + Bu, + Q5U, = cosmtsin2psin 2vt 19

Uy, + AU, + Q3,U, = COSmt CoS2¢cos2vt .

The functions on the right sides of equations (19) are complicated functions of time —
product of two harmonic functions. For simple solution of stationary forced vibrations it is
convenient to transform these expressions into sum of terms containing just only one
harmonic function of time:

coswtsin2gsin2vt =sin 2p [sin(w + 2v)t —sin(w — 2v)t]/ 2

(20)
coswt c0S2¢ cos2vt = cos2¢ [cos(w+ 2v)t + cos(w— 2v)t]/ 2.
Solution (19) after introduction (20) gives
- sin2psinf(w+2v)t —y 4| ~ sin2psin[(w-2v)t -y, |
T 2fQh - (22 + B+ )’ 2/(QF - (0-2v)2)% + B (w—2v)?
(21)

cos2¢cog (@ + 2v)t — iy, | cos2¢cod(w—2v)t — iy, |
u, = + .
2)(Q% —(@+2)2)% + fA(0+2)*  2(Q% —(0-2v)?)% + B*(w—2v)?
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The phase angles are

_ 2v)
_ — tan~ Blo+
Va =V¥n ng _ (C()+ 21/)2 (22)
Var =V¥h2 =tan™ plo-2)
a

Qf —(@—2v)? .

For graphical representation of these decomposition, the time history of equation (20) for
=0, w=6and v =2 isshown in Fig. 9. The input force excitation with angular frequency
w =6 isdrawn in the first row a). Its product with cos(2vt) corresponding to the running of
excitation force on the disk with angular frequency v =2 is recorded in second row b).
Bottom two curves ¢), d) give harmonic components of the signal b).

Response of rotating disk on the excitation components contain the same harmonic
components c¢), d) but their magnitudes are influenced by the dynamic amplification
coefficients different for (w+2v) and (w—2v). These amplification coefficients depend for

perfect disk on common eigenfrequency Q,, (n =2, | = 0) and on damping f.

COMPOHNENTS OF ROTATING DISK EXCITATIONS - @=6, v=2

ANANNNNNS
ARVARVERVERVERVERV/
. cos(o t) b=0 |
4 4
ar cos(e t)*cos(2v f) 7
T |
1k cos({ot+2y) t)i2 i
Y Pt .

= T "

1l I-::-::s((n:a:-zw.l-,'pt}.f2 . . o
0 1 2 3 4 5 B
TIMEt [s]

Fig. 9

There dynamic amplification coefficients are
for (@+2v): Q% 1(Q% —(0+2v)? + B2 (0 + 2v)?

(23)

for (w-2v): Q2% 1(Q% — (- 2v)% + f2(w—2v)?
The entire response of rotating disk on space fixed harmonic excitation F,coswt with

increasing excitation frequency can be ascertained after connected both components (21) into
one expression.
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u(ep,t,w) =u, +u, =

_ cos(2¢ — (w+ 2v) + ;) N cos(2p+ (w—2v) —y,) (24)
2/(Q% — (0+2v) + B2 (0+ )2 2/(Q% —(0—2v)% + B2 (w—2v)?

a4 Blo+2v) a4 Blo-2v)
2 7 Yo =tan 2 2

where y, = tan

Let us choose disk eigenfrequency Q.,, =250 and damping S =10, speed of disk rotation

let be v =20. Time histories of both components u, and uy, are shown in Fig. 10 for exciting
frequency w =210 and in Fig. 11 for frequency w =290, al in one point thedisk at ¢ =0.

In the first case, the component u, with frequency
W= Q,y—2v =250-220=210s" (25a)
comes into resonance (Fig. 10), in the second case the component u, with frequency
@=Q +2v =250+220=290s" (25b)

isin resonance as seenin Fig. 11.
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The speed v of disk rotation influences frequency position of resonance peaks. This effect
is demonstrated in Fig. 12, where a set of response curves at constant Q,, = 250, =10 and

at different disk speed v=0-15 step 2.5 is drawn in excitation frequency range
@ = (200,300)s ™. Non-rotating disk has only one resonance at @ = 250s™*. Disk rotation

splits this resonance peak into two peaks, which shift to the lower and higher frequencies. It is
caused by existence of two travelling waves in rotating disk excited in space fixed point.

20
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4. Conclusion

It has been shown that in the circular disk fixed its centre exist double eigenfrequencies with
two orthogonal modes of vibrations. Nodal diameters are arbitrary at perfect disks, but have
fixed position at imperfect disks. Analysis of dynamic properties of non-rotating imperfect
linearly damped disk excited by an external harmonic transversal force F,coswt shows the

existence of travelling waves, which intensity depends on the position of point of force
application. Detail analysis was focused on the modes with two modal diameters. Response of
stationary perfect disk on harmonic excitation is only stationary oscillation without any
travelling waves.

Response of rotating disk both perfect or imperfect (speed v) harmonically excited in fixed
point in space contains always travelling waves. Analysis focused on the frequency range near
the resonance of mode with two nodal diameters proves the existence of two resonances split
due to the travelling waves.

Presented study is a contribution to the theoretical support of experimental research of
rotating model of bladed disk carried out in our Institute. The future extension of this
theoretical analysis will include the investigation of nonlinear elastic and damping properties
of rotating disk, as well as the influence of elastic, mass and damping imperfections on the
dynamic behaviour of rotating disk.
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