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Summary: The paper deals with the description of a new method for the kinemat-
ical solution of non-simple (analytically non-solvable) mechanisms. The computa-
tional complexity of this method is better than the traditional iterative Newton me-
thod because it does not require the assembly of Jacobi matrix and the Gauss eli-
mination. The method is based on the removal of structural part of the mechanism 
being analysed that causes the analytical non-solvability. The method is applied 
for the forward kinematical solution of HexaSphere. 

1. Introduction
The investigated problem is the solution of positional kinematical problem for analytically 
non-solvable (so called non-simple) mechanical systems (mechanisms) (Stejskal & Valasek 
1996). The traditional solution method is the Newton method. However, this paper deals with 
a new method for positional kinematical solution of mechanisms with loops. The method is 
based on the concept of structural approximation, i.e. the structure of the mechanism being 
solved is simplified in such a way that the mechanism with simplified structure is analytically 
solvable. The analytical solution is the basis of the iteration. This method has been successful-
ly applied for the inverse kinematical solution of non-simple serial robots (Kalny & Valasek 
1991). This paper extends this method for mechanisms with loops and specifically for forward 
kinematical solution of parallel kinematical structures. The method of structural approxima-
tion is demonstrated on HexaSphere – a new concept of redundant parallel mechanism. 

2. Method of Structural Approximation 
If a kinematical structure is not analytically solvable then it includes usually some structural 
(topological) feature that is responsible for this non-solvability. If this feature is removed the 
resulting kinematical structure becomes solvable (Fig. 1). Such feature is for example the dis-
tance of rotational axes in non-spherical robot wrist (Stejskal & Valasek 1996). If this dis-
tance is set to zero, the serial robot becomes simple and the inverse kinematical problem is 
solvable. This analytical solution is then computed for the perturbed right-hand side of kine-
matics constraints evaluated from the pervious values of coordinates. This is the basis for ite-
rations.
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The kinematical structure is described by the coordinates s . These coordinates are con-
strained by the kinematical constraints: 

( )f s 0  (1) 

These equations are not analytically solvable. But they can be split into the simple part Sf
that is analytically solvable and the non-simple part NSf  that is causing the non-solvability. 
This corresponds to the Fig. 1. 

 ( ) ( ) ( )S NSf s f s f s 0  (2) 

Because the part Sf  is analytically solvable it can be developed an iteration scheme: 

 ( ) ( )S NSf s f s  (3) 
1

1 ( ( ))i S NS is f f s  (4) 

This iteration scheme converges and this can be checked by traditional means (Rektorys 
1989)  of comparison of magnitudes of partial derivatives on left and right hand sides of (3). 

Non-simple 

Simple 

Figure 1  Non-simple kinematical structure and its structural approximation 

3. HexaSphere 
HexaSphere is a new concept of redundant parallel mechanism for spherical motion with in-
creased workspace (Fig. 2). Its purpose is to orient the platform and during that keep the point 
in the middle of the platform on the spherical surface. It was designed in the Department of 
Mechanics, Biomechanics and Mechatronics. It was successfully presented on the MSV 2008 
in Brno. 

The platform position can be described by 3 Euler angles – precession , nutation  and 
rotation . To avoid collisions of the legs it has to be fulfilled  then the platform is 
rolling during the motion. The workspace is 0 , 360 , 0 ,100 . There is not also 
any singular cases in the workspace. Instead of that it has to be dealt with the fact it is needed 
to control 6 translational positions si to orient the platform with only 3 degrees of freedom. 
That is the fundament of redundant mechanisms and also their biggest issue. 
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Figure 2  HexaSphere – prototype and CAD model 

Figure 3  HexaSphere – kinematical model 
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4. Forward Kinematical Solution of HexaSphere by Newton iterative method 
The traditional approach for solving the kinematical problems is Newton iterative method. 
Mathematically, it is solving of a set of several nonlinear equations (1). The method is based 
on the Taylor expansion (1) to the first order in the neighbourhood of initial value ks

k k
T

ff s f s s 0
s

 (5) 

where

T

f s
s

s
 (6) 

is a so-called Jacobian. From (5) we obtain a system of linear equation for ks :
k ks s f s  (7) 

If the Jacobian is a non-singular matrix, it is possible to solve the system  
1k ks f s  (8) 

1k k ks s s  (9) 

The number of independent loops is 6 (= number of joints – number of + 1). Therefore, 
when solving the forward kinematical problem of HexaSphere we have to fulfilled 6 nonli-
near equations but only in 2 unknowns – precession angle  and nutation angle . The Jacobian 
is not square matrix and we have to solve the overconstrained system. This is typical especial-
ly for redundant mechanisms. The exact solution generally does not exist. Instead of this only 
the solution with minimum residui can be found. However, such a procedure is quite compu-
tationally expensive. 

5. Forward Kinematical Solution of HexaSphere by Structural Approximation 
The forward kinematical problem of HexaSphere, that is not analytically solvable, has been 
solved by the method of structural approximation. 

The reason why the HexaSphere is not analytically solvable are non-zero distances 1 6B B ,

2 3B B , 4 5B B . The design issues are the only but insurmountable reason of these distances. 

However, if we set them to zero, the platform will become triangular and the position of its 
vertices is analytically solvable – they are determined as the intersection of three spherical 
surfaces from points iA , 1iA , S  with constant radiuses. This is the simple part of the me-
chanism. 

In case of the real HexaSphere we have to approximate it by such a simple part. Al-
though, there are six significant points Bi on the platform, the position of the platform in space 
can be expressed only by 3 points which create a triangle. Let us use points B2, B4, B6. For 
example, the structural approximation for solving the position of point B4 is introduced by 
setting the distance B4B5 to zero.  
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Figure 4  Structural approximation of hexapod for computing B4 position 

However, the particular structural approximation is carried out by supposing the know-
ledge of the vector B4B5 from the previous solution (iteration). The point A5 is moved by B5B4
to the point A’5. The resulting mechanism is analytically solvable (Fig. 4). The position of the 
point B4 is determined as the intersection of three spherical surfaces from points A4, A’5 and 
S.

This can be written as: 

4 4B A Lr r  (10) 

5 5B A Lr r  (11) 

6 .B S iB S konstr r  (12) 

Structural approximation is expressed as 

4 4 5 5B B B A Lr r r  (13) 

4 5 5 4B A B Bb Lr r e  (14) 

4B SAP Lr r  (15) 

where SAPr  is a vector of the structural approximation, i.e. the radiusvector of the point A’5.
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Figure 5  Moving platform 

Unfortunately, it is not possible to determined 5 5 4SAP A B Bbr r e . Instead of, the vector of 
structural approximation can be expressed as (see Fig. 5): 

5 1 6 4 2 4 2 5SAP A B B B B Ab br r e e r  (16) 

where b1 and b2 are constant. These equations give the intersection of three spherical surfaces: 
2 2 2 2

4 4 4B SAP B SAP B SAPx x y y z z L  (17) 

2 2 2 2
4 4 4 4 4 4B A B A B Ax x y y z z L  (18) 

22 2 2
4 4 4 4B S B S B Sx x y y z z B S  (19) 

where we changed the vector description over the scalar one whereas 
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After multiplication, the third equation (19) can be subtracted from the first (17) and second 
one (18): 

4 4 4

22 2 2 2 2 2 2
4

2 2 2S SAP B S SAP B S SAP B

SAP SAP SAP S S S

x x x y y y z z z

L x y z B S x y z
 (21) 

4 4 4 4 4 4

22 2 2 2 2 2 2
4 4 4 4

2 2 2S A B S A B S A B

A A A S S S

x x x y y y z z z

L x y z B S x y z
 (22) 
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Equations (21, 22) can be solved as a set of linear equation in unknowns xB4, yB4. Using the 
Cramer’s Rule the solution is linear in a variable zB4:

4 4

4 4

B x B x

B y B y

x k z q
y k z q

 (23) 

By insertion of the solution (23) in the equation (19) we get a quadratic equation for zB4:
2 2 2

4

4

22 2 2 2 2
4

1

2 2

2 0

z

z

z

x y B

a

x x S x y y S y S B

b

x y S x S y S S S

c

k k z

k q x k k q y k z z

q q x q y q x y z B S

 (24) 

This equation has 2 solutions. The choice is not trivial because both of them are in the work-
space of the mechanism. For the majority of positions, especially the upper half-space, the 
correct solution is always the maximum: 

2

1,2

4
2

z z z z
Bi

z

b b a c
z

a
,

1 2
max ,Bi Bi Biz z z  (25) 

and the remaining coordinates can be computed from (23).This is repeated for each point B2,
B4, B6 of the platform. Then the knowledge of these points is used for the computation of the 
orientation of the platform and hence again the position of the vector A’5. It is very essential 
that the orientation is determined only as the elements of the matrix of direction cosines and 
not as the Euler or Cardan angles. The Euler or Cardan angles are computed only at the end of 
the iterations. The orientation of the platform can be computed once during one iterative step 
or can be re-calculated after computation of each point – this means three times per one itera-
tive step. The latter one improves the iteration process. 

The iteration progress is shown in Fig. 6 and 7. The convergence of the method is very ro-
bust – the number of the iteration steps depends on the initial iteration only imperceptibly. 
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Figure 6  Iteration process with fixed initial iteration 
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Figure 7  Iteration process with initial iteration equals previous step on trajectory 

This procedure has been compared with traditional solution by Newton iterations. The 
comparison of the computational complexity (elapsed time) is in Tab. 1. The method of struc-
tural approximation is favourable and robust, especially for solving without any estimation. 
The reason for that is that no computation of Jacobi matrix and no Gauss elimination are ne-
cessary. 

Table 1  Comparison of computational complexity  

 Fixed initial iteration Estimated initial iteration 

Newton’s iterative method 20.4 ms 5.5 ms 

Structural approximation 9.2 ms 8.7 ms 

The biggest issue of redundant mechanism forward kinematics is that the exact solution 
generally does not exist. As was mentioned above it is necessary to solve an overconstrained 
system of equations. The exact solution exists only for special sets of inputs (actuator posi-
tions si). However, the structural approximation seems to be very efficient technique to solve 
such a problem. Let us consider each of the actuator position si is with 1% error. The advan-
tage of the structural approximation is that the computational complexity is influences very 
slightly (Tab. 2). 

Table 2  Comparison of computational complexity for solution with errors of inputs 

 Fixed initial iteration Estimated initial iteration 

Newton’s iterative method 19.2 ms 6.0 ms 

Structural approximation 9.5 ms 8.0 ms 
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6. Conclusion 
The paper describes a new procedure of structural approximation for the solution of positional 
kinematical solution of parallel kinematical structures that are not analytically solvable. This 
procedure achieves better computational complexity than the traditional Newton method. The 
procedure has been used for the solution of forward kinematical problems of the HexaSphere. 
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