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Summary: The most common constitutive relation in acoustoelasticity is the
second-order constitutive relation expressed in terms of the Green-Lagrange strain
tensor. The wave velocities in isotropic elastic media for the case of homogeneous
pre-stress were derived by Hughes and Kelly (1953). This material model is char-
acterized by the high sensitivity of material parameters to the small measurement
errors. This rather bad property leads to the proposal of another material model
with the second-order constitutive relation expressed in terms of the logarithmic
strain tensor. For this material model the acoustic wave velocities were derived for
three different types of homogeneous pre-stress.

1. Introduction

Acoustoelasticity is a phenomenon describing the pre-stress dependency of the velocities of
sound-like waves propagating through an elastic material. The theory of acoustoelasticity was
introduced by (Hughes and Kelly, 1953). They measured the effect of the uniaxial stress on
the velocity of the wave in an isotropic elastic material. They also proposed the method for
identification of the three additional third-order elastic constants corresponding to Murnaghan’s
free energy function (Murnaghan, 1951).

The frequently used Green-Lagrange strain tensor is easy and straightforward in its definition
and may well be used, the constitutive models based on it often exhibit definite instabilities
when performing large deformation.

Theoretically, all the strain measures are equivalent but for a fixed choice of the stored en-
ergy function, for instance a polynomial of the third-order, different strain tensors will represent
different material models. If so, the definition of the strain tensor becomes essential and, in par-
ticular, stability then seems to be the key issue. Because of these reasons and keeping stability
issues in mind, the authors of this paper set out to derive acoustic tensors based on the third
order polynomial free energy function, using an arbitrary Hill strain measure, seeking the best
alternative in terms of sensitivity property.
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In this work, the coefficients of the acoustic tensor as functions of the applied initial stress are
determined. The result may be used to establish numerical values of material constants suitable
for the logarithmic model of hyperelasticity.

2. Wave velocities in elastic media

They are two different kinds of waves propagating in the unbounded elastic media. If the motion
of particles is in the same direction as is the direction of the wave propagation, then the wave
is called pure longitudinal, and if the wave motion is perpendicular to the direction of the wave
propagation, then the wave is called pure shear wave. The velocity of these waves propagating
in an isotropic or orthotropic material with the principal material directions 1, 2 and 3, is given
by

ρ0c
2
0L = A1111

ρ0c
2
0S1 = A2121

ρ0c
2
0S2 = A3131,

(1)

where ρ0 is the material density in the unloaded state, c20L is the square of the ’natural’ velocity
of the longitudinal wave, c20S1 and c20S2 are the ’natural’ velocities of the shear waves. ’Natural’
velocity is related to the undeformed configuration, which can be more readily obtained from
the experiments. A1111, A2121 and A3131 are the components of the first elasticity tensor A,
which is defined (Ogden, 1984) as

Π = AḞ, (2)

where Π is the first Piola-Kirchhoff stress tensor and Ḟ is the material derivative of the de-
formation gradient F. The cartesian components of the first elasticity tensor A can be for a
general strain tensor E found in (Kruisova and Plesek, 2006). The components used in (1) have
the forms

A1111 = Σ11f
��(λ1) +

(
f �(λ1)

)2
H1111,

A2121 =
Σ11f

�(λ1)λ1 − Σ22f
�(λ2)λ2

λ2
1 − λ2

2

− 2λ2
2

f(λ1)− f(λ2)

(λ2
1 − λ2

2)
2 (Σ11 − Σ22) +

+ λ2
2

[f(λ1)− f(λ2)]
2

(λ2
1 − λ2

2)
2 (H1212 +H2112 +H2121 +H1221) ,

A3131 =
Σ11f

�(λ1)λ1 − Σ33f
�(λ3)λ3

λ2
1 − λ2

3

− 2λ2
3

f(λ1)− f(λ3)

(λ2
1 − λ2

3)
2 (Σ11 − Σ33) +

+ λ2
3

[f(λ1)− f(λ3)]
2

(λ2
1 − λ2

3)
2 (H1313 +H3113 +H3131 +H1331) ,

(3)

where λi are the principal stretches of the deformation, f(λi) are the principal values of the
general Hill strain tensor E, f �(λi) are the derivative of f(λi) along the principal stretch λi.
Σij are the components of the stress tensor conjugate to the general Hill strain tensor, such as
JEijΣij = σklDkl (J is the Jacobian of the deformation J = detF, σkl are the components of
the Cauchy stress tensor and Dkl are the components of rate of the deformation tensor). The
fourth order tensor H is the Hessian of the deformation energy ψ in respect to E, its components
are

Hijkl =
∂2ψ

∂Eij∂Ekl

. (4)
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Since the general Hill’s strain tensor is symmetric, the Hessian possesses both the major and
minor symmetries.

3. Constitutive relations

The constitutive relations used here were of the second-order given by a third-order strain en-
ergy function ψ. Hereafter we restrict our investigation to the isotropic material. Then the strain
energy function can be expressed in terms of three invariants

Ik =
1

k
trEk, k = 1, 2, 3 (5)

of an arbitrary strain tensor E in the form

ψ =
1

2
ΛI2

1 + 2μI2 +
1

6
(2l − 2m+ n)I3

1 + (2m− n)I1I2 + nI3, (6)

where Λ and μ and two Lamé’s constants and l, m and n are the third order parameters. The
stress tensor

Σij =
∂ψ

∂Eij

(7)

is then

Σij = ΛI1δij +
1

2
(2l − 2m+ n)I2

1δij + (2m− n)I2δij+

+ 2μEij + (2m− n)I1Eij + nEimEmj. (8)

The Hessian components are according to (4)

H1111 = Λ + 2μ+ 2lI1 + 4mE11,

H1212 =
μ

2
+
m

2
I1 − n

4
E33,

H1313 =
μ

2
+
m

2
I1 − n

4
E33.

(9)

4. Green-Lagrange strain tensor

If the Green-Lagrange strain tensor is used in conjunction with the second order constitutive
relations, we talk about the Murnaghan material model and its new material parameters l, m,
n are called Murnaghans parameters, see (Murnaghan, 1951). Since the material model of
the second order with the Green-Lagrange strain tensor counts among the classic models in
acoustoelasticity, the results are known, see (Hughes and Kelly, 1953). In this paper, the wave
velocities were derived for the case of homogeneously pre-stressed material. The linearised
relations of the wave velocities are given by

• hydrostatic pressure p

ρ0(c0L)2 = Λ + 2μ− p

3Λ + 2μ
(5Λ + 6μ+ 6l + 4m)

ρ0(c0 S)
2 = μ− p

3Λ + 2μ

(
3Λ + 4μ+ 3m− 1

2
n

)
,
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• pre-stress t in longitudinal direction

ρ0(c0 L)2 = Λ + 2μ+

[
9Λ + 6μ+ 4m+ 2l +

2Λ2

μ
+

4mΛ

μ

]
t

3Λ + 2μ

ρ0(c0 S)
2 = μ+

[
2Λ + 2μ+m+

nΛ

4μ

]
t

3Λ + 2μ
,

• pre-stress t in transverse direction

ρ0(c0 L)2 = Λ + 2μ+

[
2l − 2Λ− (Λ + 2m)

Λ

μ

]
t

3Λ + 2μ

ρ0(c0 S1)
2 = μ+

[
m− n

2
− Λ− nΛ

2μ

]
t

3Λ + 2μ

ρ0(c0 S2)
2 = μ+

[
nΛ

4μ
+ 2Λ + 2μ+m

]
t

3Λ + 2μ
.

5. Logarithmic strain tensor

Now the logarithmic strain tensor lnU is used in the constitutive relations instead of the Green-
Lagrange strain tensor and the wave velocities for homogeneous deformation are derived.

We suppose the homogeneous deformation described by the diagonal deformation gradient
F = diag [λ1 λ2 λ3]. The deformation gradients and the Cauchy stress tensors describing the
loading modes analysed are

F =

⎡⎣λ 0 0
0 λ 0
0 0 λ

⎤⎦ , σ =

⎡⎣−p 0 0
0 −p 0
0 0 −p

⎤⎦ (10)

for the pre-stressed caused by the hydrostatic pressure,

F =

⎡⎣λ1 0 0
0 λ2 0
0 0 λ2

⎤⎦ , σ =

⎡⎣t 0 0
0 0 0
0 0 0

⎤⎦ (11)

for the material pre-stressed in the direction 1, which is identical with the direction of the wave
propagation and

F =

⎡⎣λ1 0 0
0 λ2 0
0 0 λ1

⎤⎦ , σ =

⎡⎣0 0 0
0 t 0
0 0 0

⎤⎦ (12)

for the material pre-stressed in the direction 2, which is the direction perpendicular to the direc-
tion of the wave propagation.

For the deformation gradient in the diagonal for the general constitutive relations (8) yields
the components of the stress tensor T, which is conjugate to the logarithmic strain tensor in the
form

T11 = lnλ1 (Λ + 2μ)+2 lnλ2Λ+ln2 λ1

(
l̄ + 2m̄

)
+ln2 λ2

(
4l̄ − 2m̄+ n̄

)
+lnλ1 lnλ24l̄ (13)
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and

T22 = T33 = lnλ1Λ+2 lnλ2 (Λ + μ)+ln2 λ1l+ln2 λ2

(
4l̄ + 2m̄

)
+lnλ1 lnλ2

(
4l̄ − 2m̄+ n̄

)
.

(14)
Since the elastic material is supposed to be isotropic, the components of the stress tensor con-
jugate to the logarithmic strain tensor can be calculated from the Cauchy stress tensor through

Tij = JR−1
ik σklR

−1
jl , (15)

where R = I for the strain described by the diagonal deformation gradient.
The use of Eqs. (10), (11), (12), (13), (14), and (15) yields the relations between the load

and stretches. For hydrostatic pressure we have load versus stretch relation in form

−p = λ−3
[
(3Λ + 2μ) lnλ+

(
9l̄ + n̄

)
ln2 λ

]
. (16)

The material pre-stressed in the longitudinal direction is described by the one-dimensional load
versus stretch relation

λ1λ
2
2 t = lnλ1 (Λ + 2μ) + 2 lnλ2Λ + ln2 λ1

(
l̄ + 2m̄

)
+ ln2 λ2

(
4l̄ − 2m̄+ n̄

)
+ lnλ1 lnλ24l̄

(17)
and transverse versus longitudinal stretch relation

0 = lnλ1Λ + 2 lnλ2 (Λ + μ) + ln2 λ1l̄+ ln2 λ2

(
4l̄ + 2m̄

)
+ lnλ1 lnλ2

(
4l̄ − 2m̄+ n̄

)
. (18)

The material pre-stressed in the transverse direction is described by the one-dimensional load
versus stretch relation

λ2
1λ2 t = 2 lnλ1Λ + lnλ2 (Λ + 2μ) + ln2 λ1

(
4l̄ − 2m̄+ n̄

)
+ ln2 λ2

(
l̄ + 2m̄

)
+ lnλ1 lnλ24l̄

(19)
and transverse versus longitudinal stretch relation

0 = 2 lnλ1 (Λ + μ) + lnλ2Λ + ln2 λ1

(
4l̄ + 2m̄

)
+ ln2 λ2l̄+ lnλ1 lnλ2

(
4l̄ − 2m̄+ n̄

)
. (20)

For the hydrostatic pre-stress, the components of the first moduli given in (3) defining the
wave velocities (1) are

ρ0(c0 L)2 =
1

λ2

[
Λ + 2μ+

(−3Λ− 2μ+ 6l̄ + 4m̄
)
lnλ− (

9l̄ + n̄
)
ln2 λ

]
ρ0(c0 S)

2 =
1

λ2

[
μ+

(
3m̄− n̄

2

)
lnλ

]
.

(21)

For the longitudinal pre-stress

ρ0(c0L)2 = −λ−1
1 λ2

2 t+ λ−2
1 (Λ + 2μ) + λ−2

1 lnλ1

(
2l̄ + 4m̄

)
+ λ−2

1 lnλ24l̄

ρ0(c0 S)
2 =

λ1λ
2
2 t

λ2
1 − λ2

2

− 2λ1λ
4
2 t (lnλ1 − lnλ2)

(λ2
1 − λ2

2)
2 + 4μλ2

2

(lnλ1 − lnλ2)
2

(λ2
1 − λ2

2)
2 +

+ 4m̄λ2
2 lnλ1

(lnλ1 − lnλ2)
2

(λ2
1 − λ2

2)
2 + (8m̄− 2n̄)λ2

2 lnλ2
(lnλ1 − lnλ2)

2

(λ2
1 − λ2

2)
2

(22)
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and for the material pre-stressed in transversal direction

ρ0(c0L)2 = λ−2
1

[
Λ + 2μ+ lnλ1

(
4l̄ + 4m̄

)
+ lnλ2 2l̄

]
ρ0(c0 S1)

2 = λ−2
1

[
μ+ lnλ1 2m̄+ lnλ2

2m̄− n̄

2

]
ρ0(c0 S2)

2 =
−λ2

1λ2 t

λ2
1 − λ2

2

[
1− 2λ2

2

lnλ1 − lnλ2

λ2
1 − λ2

2

]
+

+ λ2
2

[lnλ1 − lnλ2]
2

[λ2
1 − λ2

2]
2 [4μ+ lnλ1 (8m̄− 2n̄) + lnλ2 (4m̄)] .

(23)

The relations (21), (22) and (23) are very complicated and can be used only together with
non-linear relations (16) to (20), but analogously as in (Hughes and Kelly, 1953) they can be
linearised for the negligible load causing the pre-stress t → 0, p → 0 and the stretch λ → 1,
λ1 → 1, and λ2 → 1.

The linearisation of the wave velocities for the elastic isotropic material pre-stressed in the
transverse direction is shown in Fig. 1–3.

6. Results

The linearised velocities of the waves in case when the logarithmic strain is used instead of the
Green-Lagrange strain are

• hydrostatic pressure p

ρ0(c0 L)2 = Λ + 2μ− p

3Λ + 2μ

(−5Λ− 6μ+ 6l̄ + 4m̄
)

ρ0(c0 S)
2 = μ− p

3Λ + 2μ

(
−2μ+ 3m̄− n̄

2

)
,

• pre-stress t in longitudinal direction

ρ0(c0L)2 = Λ + 2μ+

[
−9Λ− 6μ+ 4m̄+ 2l̄ + (−2Λ + 4m̄)

Λ

μ

]
t

3Λ + 2μ

ρ0(c0 S)
2 = μ+

[
−Λ

2
− μ+ m̄+

n̄Λ

4μ

]
t

3Λ + 2μ
,

• pre-stress t in transverse direction

ρ0(c0 L)2 = Λ + 2μ+

[
2Λ + 2l̄ + (Λ− 2m̄)

Λ

μ

]
t

3Λ + 2μ

ρ0(c0 S1)
2 = μ+

[
Λ + m̄− n̄

2
− n̄Λ

2μ

]
t

3Λ + 2μ

ρ0(c0 S2)
2 = μ+

[
−Λ

2
− μ+ m̄+

n̄Λ

4μ

]
t

3Λ + 2μ
.
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Figure 1: The longitudinal wave in transver-
sally pre-stressed material.

Figure 2: First shear wave in transversally
pre-stressed material.
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Figure 3: Second shear wave in transversally pre-stressed material.
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