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Summary: The paper suggests and innovative approach to modeling of the
progress of tunnel excavation. The proposed method uses dimension reduction to
incorporate the supporting effect of the material in the front of and behind the ex-
amined cross section. This allows to take the advantages of the efficiency and sim-
plicity of finite element modeling with two dimensional mesh while considering the
longitudinal properties such as the width of the excavated segment. The out of plane
phenomenons are calibrated via in situ measurements of convergence curves in front
of and behind the tunnel heading. The dimension reduction approach can serve as
an alternative to often employed convergence confinement method.

1. Introduction

Although the process of successive excavation of tunnel tube is clearly an three dimensional
problem the practical engineer often tends to employ some simplified approach. A higher time
demand and the complexity of the model often force many design engineers to use the 3D
analysis only for specific problems such as tunnel junctions while the linear parts of tunnel
tubes analyze in 2D software.

The most common way to model the effect of excavation in two dimensions is so called
convergence confinement method also known as lambda method or beta method. The principle
behind this procedure lies in the devision of the excavation forces. First portion of the load due
to the excavation is applied to the profile without lining simulating the state just after segment
excavation with substantial supporting effect of the longitudinal vault. The remaining portion
of the excavation forces are applied in the profile with lining representing the state when the
tunnel heading has already moved forward and no longitudinal support takes place any more.

This paper provides a theoretical framework to how toderive the supporting effect of the
longitudinal vault from in situ measurements without actually solving 3D problem.

2. Computation stages of successive excavation

The core of the proposed analysis is to examine the impact which is caused by excavation of
an tunnel segment of defined width. However, this computation stage is preceded by another
two stages which create the proper initial stress state. In the first stage the geostatic stresses
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are computed by loading the system with self weight. No excavation is assumed in this stage
allowing to adopt plane strain conditions. A three node triangular plane strain element was
chosen for this type of analysis.

Figure 1. Computation stages and distribution of material

The second stage models the initial stress state before the actual segment excavation. The
loading in the second analysis is derived from the excavation forces found along the semi-
infinite tunnel tube while the element stiffness matrix takes the contribution of elements I, II
and III into account for elements outside the tunnel profile, resp the contribution of elements
II and III for element in the profile. Figure 1 demonstrates the arrangement of material in
individual stages.

The third stage simulates the excavation of the single segment. The excavation forces are
derived from the segment width and preceding stress state while the stiffness matrix belonging
to the elements in the tunnel profile incorporates the supporting effect of segment III only.
However the stiffness of the elements outside the profile remains unchanged and incorporates
all three parts.

3. Formulation of finite element

Before formulating the detailed finite element procedures for each individual computation stage
it is useful to introduce basic properties of the newly created element.

In the formulation we assume no longitudinal displacements (w = 0) and therefore the
desired field of displacements u(x) reduces to

u(x) = {u, v}T . (1)

For linear triangular element the vector of nodal displacements r takes the form

r = {u1, v1, u2, v2, u3, v3}T . (2)

Strain and stress components are stored in standard column vectors ε and σ which write

ε = {εxx, εyy, εzz, γyz, γxz, γxy}T , (3)
σ = {σxx, σyy, σzz, τyz, τxz, τxy}T . (4)

Shape functions interpolates the increment of displacements at any point of the element, i.e.
even outside the solved section. The interpolation in the plane of the triangular element takes
advantage of the classical isoparametric formulation while the interpolation in the longitudinal
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direction (outside the solved section) depends on function f(z). Combining the out-of-plane
and in-plane interpolation we arrive at matrixN i form

N (x) = f

[
N1 0 N2 0 N3 0
0 N1 0 N2 0 N3

]
, (5)

where N1 = N1(x, y), N2 = N2(x, y), N3 = N3(x, y) depend on the position in xy-plane while
f = f(z) is based on site measurement.

By differentiating the above matrix we receive matrixB in the form

B(x) =



f(z)
∂N1

∂x
0 f(z)

∂N2

∂x
0 f(z)

∂N3

∂x
0

0 f(z)
∂N1

∂y
0 f(z)
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∂y
0 f(z)

∂N3

∂y
0 0 0 0 0 0
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∂f(z)

∂z
N1 0

∂f(z)

∂z
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∂f(z)

∂z
N3 0

f(z)
∂N1

∂y
f(z)

∂N1

∂x
f(z)

∂N2

∂y
f(z)

∂N2

∂x
f(z)

∂N3

∂y
f(z)

∂N3

∂x



, (6)

which can be decomposed into two independent matrices

B(x) = Bz(z)Bx,y(x, y), (7)

where

Bz(z) =



f(z) 0 0 0 0 0
0 f(z) 0 0 0 0
0 0 f(z) 0 0 0

0 0 0
∂f(z)

∂z
0 0

0 0 0 0
∂f(z)

∂z
0

0 0 0 0 0 f(z)


(8)

Bx,y(x, y) =



∂N1

∂x
0
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0

∂N3

∂x
0

0
∂N1

∂y
0

∂N2

∂y
0

∂N3
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0 0 0 0 0 0
0 N1 0 N2 0 N3

N1 0 N2 0 N3 0
∂N1

∂y

∂N1

∂x

∂N2

∂y

∂N2

∂x

∂N3

∂y

∂N3

∂x


(9)

Element stiffness matrixK has to incorporate both the in-plane and out-of-plane contributions

K =
∫
V
B(x)TDB(x) dx (10)

=
∫
V
BT
x,y(x, y)B

T
z (z)DBz(z)Bx,y(x, y) dx (11)
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Due to the special properties of matricesBz andD we can rewrite the above equation

K =
∫
V
BT
x,y(x, y)B

T
z (z)Bz(z)DBx,y(x, y) dx (12)

=
∫
A
BT
x,y(x, y)

Kz︷ ︸︸ ︷∫ z2

z1
BT
z (z)Bz(z) dzDBx,y(x, y) dx dy (13)

=
∫
A
BT
x,y(x, y)

D︷ ︸︸ ︷
KzDBx,y(x, y) dx dy (14)

=
∫
A
BT
x,y(x, y)DBx,y(x, y) dx dy (15)

This formulation allows for standard in-plane integration using Gaussian quadrature on the
isoparametric triangular element while the out-of-plane contribution is incorporated in the ma-
trixD. Without choosing particular form of the function f(z) we can write the productBT

zBz

as follows

BT
z (z)Bz(z) =



f 2(z) 0 0 0 0 0
0 f 2(z) 0 0 0 0
0 0 f 2(z) 0 0 0

0 0 0

(
∂f(z)

∂z

)2

0 0

0 0 0 0

(
∂f(z)

∂z

)2

0

0 0 0 0 0 f 2(z)


(16)

and performing integration we get

Kz =
∫ z2

z1
BT
zBz dz =



I1 0 0 0 0 0
0 I1 0 0 0 0
0 0 I1 0 0 0
0 0 0 I2 0 0
0 0 0 0 I2 0
0 0 0 0 0 I1


(17)

where symbols I1 and I2 denotes definite integrals

I1 =
∫ z2

z1
f 2(z) dz (18)

I2 =
∫ z2

z1

(
∂f(z)

∂z

)2

dz (19)

Finally recall the 3D form of material stiffness matrixD used in the above expressions

D =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2
0 0

0 0 0 0 1−2ν
2

0
0 0 0 0 0 1−2ν

2


(20)
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4. Interpolation of convergence curves

The measured convergence curve shown in Figure 2 can be approximated with sufficient accu-
racy with two smoothly connected exponential functions. Assuming that the material properties
of the soil body does not change significantly in the direction of the tunnel axis the convergence
curve does not change its shape but simply moves forward together with advancing excavations.
This allows to create function f(z) which interpolates the increments of displacements outside
the solved cross section.

f(z) = eα1(z+ b
2
), z ∈

(
−∞,− b

2

〉
(21)

f(z) = 1, z ∈
〈
− b

2
,
b

2

〉
(22)

f(z) = e−α2(z− b
2
), z ∈

〈
b

2
,∞

)
(23)

Figure 2. Convergence curve - Dependence of vertical settlement on the progress of tunnel
heading

The formulation ensures that influence of the excavation decline with the distance from the
examined section. For such a choice the integrals I1 and I2 become

I1 =
1

2α1

+ b+
1

2α2

(24)

I2 =
α1 + α2

2
(25)

Similar technique is used to derive the values of excavation forces. Removing the supporting
material generally restults in nodal forces given by equation

R =
∫
V
BTσ dV +

∫
V
NTγ dV (26)
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where γ represents the volumetric weight and the volume V corresponds to the excavated soil.
Dividing the matrices into out=of-plane and in-plane parts we can rewrite the above expression
to the form

R =
∫ z4

z3
BT
z dz

∫
A
BT
xyσ dA+

∫ z4

z3
NT

z dz
∫
A
NT

xyγ dA (27)

where

∫ z4

z3
Bz dz =



I3 0 0 0 0 0
0 I3 0 0 0 0
0 0 I3 0 0 0
0 0 0 I4 0 0
0 0 0 0 I4 0
0 0 0 0 0 I3


(28)

The values of the integrals take different values depending on the stage and the position of the
element. See Table 1 for details. The different values are given by different limits of integration
in each individual computation stage.

Table 1. Values of integrals used to incorporate out-of-plane stiffness
Computation stage Element position I1 I2

2nd Outside the profile 1
2α1

+ b+ 1
2α2

α1+α2

2
1m

2nd Inside th profile 1
2α1

+ b α1

2
1m

3rd Outside the profile 1
2α1

+ b+ 1
2α2

α1+α2

2
1m

3rd Inside the profile 1
2α1

α1

2
1m

The integrals I3 and I4 also changes with the type of computation stage and are defined in
Table 2. In the second stage the integrals define the nodal load forces resulting from all past
excavation while in the third stage the integrals define the excavation forces found over the
single segment of finite width b.

Table 2. Values of integrals used to incorporate out-of-plane excavation forces
Computation stage I3 I4

2nd 1
α1

1
3rd 1 0

5. Incremental solution in the context of continuous tunnel driving

As outlined in the previous sections the values of displacement outside the solved 2D section
are interpolated using function f(z) as shown in Figure 3.
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Figure 3. Properties of function f(z)

At the beginning of the analysis all quantities are known throughout the soil body. For instance,
the values of displacement are set to zero in the initial state and the initial stress corresponds to
the geostatic stress. This initial state is denoted by index 1 in Figure 3.

As the tunnel driving proceeds the soil body passes several additional states. These include

• State before single segment excavation

• State after single segment excavation

• Final state - whole length of the tunnel excavated

and are labeled with indexes 2, 3 and 4 respectively in Figure 3.
Recal that the suggested approach uses function f(z) to model the distribution of the quan-

tities along the z axis and that this function is composed of two exponential functions.

f(z) = f1(z) forz ≤ 0 (29)
= f2(z) forz ≥ 0 (30)

where function f1(z) characterizes the values in front of tunnel heading while f2(z) describes
the values in the half-space which already include the tunnel tube.

If the function f(z) describes certain quantity X it should satisfy the following conditions

f(z → −∞) = X1 (31)
f(z = 0) = X2 (32)

f(z →∞) = X4 (33)

which help us to write the actual functions f1(z) and f2(z) in the forms

f1(z) = X1(1− eα1z) +X2e
α1z (34)

f2(z) = X4(1− e−α2z) +X2e
−α2z (35)

The derivatives with respect to z are

f ′1(z) = (X2 −X1)α1e
α1z (36)

f ′2(z) = (X4 −X2)α2e
−α2z (37)
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The assumption that the function f(z) is smooth in the point z = 0 written as

f ′1(z = 0) = f ′2(z = 0) (38)

provides us with relation

(α1 + α2)X2 = α1X1 + α2X4 (39)

When the excavation moves forward by b meters from the solved section, i.e. a single seg-
ment is excavated, the valueX2 changes toX3. Equation (35) illuminate that the resulting value
follows

X3 = f(b) = X4(1− e−α2b) +X2e
−α2b (40)

These general property of interpolation function f(z) is applied to values of stresses in the
following way: the three computation stages give the stress fields denoted here as σ1, σ2 and σ3

respectively. The inaccuracy of σ2 lies in the fact that in the second stage we try to reflect all
past excavation in one step. With the help of the equation derived above we rewrite the equation
(40) in terms of stress and performing some basic manipulation we get

σ4 =
σ3 − σ2e

−α2b

1− e−α2b
(41)

which is the approximation of the final stress state. Further rewriting and manipulating equation
(39) we arrive at equation

σ2 =
α1σ1 + α2σ4

α1 + α2

(42)

which refine the initial condition for the crucial computations in stage 3.

6. Results

One cross section of the city road tunnel Blanka in Prague served as simple problem to test
the method. For simplicity only the elastic material properties were assumed and no beams
simulating the lining were introduced to the model during excavation stages. Figure 4 shows
the differences in the vertical stress distribution before and after third computation stage which
corresponds to the excavation of single soil segment.

(a) (b)

Figure 4. Vertical stresses before and after the excavation single segment
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Similarly, Figure 5 provides the overall vertical displacements before the segment excavation
and the increment of vertical displacement caused by the segment excavation.

(a) (b)

Figure 5. Vertical displacements: (a) total value before the segment excavation, (b) increment
due to the excavation

7. Conclusions

The article provided the theoretical background of the dimensional reduction technique used to
simulate the process of continuous tunnel construction in two dimension finite element mesh.
The out of plane stiffness and excavation forces are calibrated through in situ measurements of
convergence curves. The properties of these curves also allow to refine the possible inaccurate
initial stress field. The method was tested on simple elastic excavation problem and the results
are comparable with results from the standard convergence confinement method.
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