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Summary: Analytical derivation of the sound speed is presented in this report. 
The derivation is shown on the example of water – air mixture, but the results are 
applicable for any fluid – gas mixture. 

1. Introduction
The sound speed (fluid celerity) is usually assumed to be about 1500 m/s and it is also 
assumed that this value is little variable. It is possible to compute more accurate value using 
equations, which are published by IAPWS (The International Association for the Properties of 
Water and Steam). This speed is valid only for water. In practise, there is also some volume of 
air included with the water. This air causes noticeable decrement of the sound speed. In this 
contribution, the air in the form of bubbles of not absorbed air is assumed. 

2. Nomenclature 
vs [m·s-1]  Sound speed in mixture 
vv [m·s-1]  Sound speed in water 
At [J]  Technical work 
cp [J kg-1·K-1] Specific heat of air – constant pressure 
cv [J kg-1·K-1] Specific heat of air – constant volume 
cw [J kg-1·K-1] Specific heat of water 
I [J]  Enthalpy 
Ks [m·s-1]  Bulk modulus of mixture 
Kv [Pa]  Bulk modulus of water 
Kvz [Pa]  Bulk modulus of air 
Mv [-]  Mass ratio of water 
Mvz [-]  Mass ratio of air 
mv [kg]  Mass of water 
mvz [kg]  Mass of air 
Ov [-]  Volume ratio of water 
Ovz [-]  Volume ratio of air 
p [Pa]  Pressure 
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Q [J]  Heat 
r [J kg-1·K-1] Gas constant  
T [K]  Temperature 
Vv [m3]  Water volume 
Vvz [m3]  Air volume 

 [-]  Adiabatic constant 
s [kg m-3] Mixture density 
v [kg m-3] Water density 

3. Properties of water and air 
vv = 1450 m·s-1 is independent on the pressure 
cw = 4200 J kg-1·K-1

v = 1000 kg·m-3

T = 293 K 
 = 1,4 

r = 287 
Air is uniformly spread out in the water. 

4. Adiabatic behaviour – constant air mass 
At first we assume adiabatic behaviour of the air.  

We can compute sound speed of the mixture as a square root of the ratio between bulk 
modulus and density. 
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We separate total mass and total volume to the water content and air content. Air volume is 
given by state equation. 
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If we divide numerator and denominator with total mass we get resultant relationship for 
density of the mixture ( 1MM vzv ).
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With similar procedure we obtain bulk modulus, see following equation: 
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We assume adiabatic behaviour and so pKvz , v
2
vv vK  and we express volume 

ratios by volumes. 
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Now, we can specify volumes and again divide numerator and denominator with total 
mass. 
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We obtain result after a few modifications. 
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Resultant sound speed of the air is then: 
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Figure 1  Sound speed dependence on the pressure for different air mass ratios 
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5. Adiabatic behaviour – constant pressure 
In this case is it advantageous to compute density with volume ratios. 
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We divide numerator and denominator with total volume ( 1OO vzv , it is valid for 
constant pressure) and air density is expressed by the equation of state. 
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and sound speed in the mixture is again: 
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For completeness, translational equations between volume ratio and mass ratio of the air: 
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Figure 2  Dependence on the volume ratio of air for different pressures 
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Figure 3  Dependence on the volume ratio of air – detail 

6. Isothermal behaviour – constant air mass 
We assume isothermal behaviour of the air now. It means that Kvz = p. It has no impact on the 
density of mixture, but bulk modulus is different. 

With same procedure like above we obtain expression for bulk modulus of mixture. It is 
similar with equation (8). The only difference is that adiabatic exponent disappeared. 
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Figure 4  Comparison of adiabatic and isothermal hypothesis (Mvz = 10-4)
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7. Isothermal behaviour – constant pressure 
Adiabatic exponent disappeared again. 
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Figure 5  Adiabatic and isothermal hypothesis (p = 1 MPa) 
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Figure 6  Adiabatic and isothermal hypothesis (p = 1 MPa) – detail 

(18)

Engineering Mechanics 2009, Svratka, Czech Republic, May 11 – 14

398



8. Adiabatic behaviour – whole system 
Lastly, we can assume that whole system is adiabatic. It means that heat is exchanged 
between water and air but overall heat is constant. 

Following equation is valid for air: 
       tdAdIdQ      (19) 

and water heat flow is described by: 
 dTcmdQ wv  (20) 

We obtain relationship for air in the mixture by putting together equations (19) and (20). We 
specify also terms dI and dAt.

               dpVdTcmdTcm vzpvzwv  (21) 

We express volume of the air from state equation and then divide whole relationship with 
total mass (mvz + mv).

dp
p

TrMdTcMdTcM vz
pvzwv  (22) 

After rearrangement: 
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T
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In order to simplify: 
EcMcM wvpvz  (24) 

Now, we can integrate equation (23). Expression ln(Ki) is integration constant. 

ivz KlnTlnEplnrM  (25) 

We remove logarithms and use state equation again. 
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After rearrangement: 
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Variable n depends on the ratio water/air! 
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Bulk modulus of the air is: 

pnpK
vz

vzvz  (30) 

Next derivation of the sound speed in the mixture is same like in chapter 3 and 4. Only 
variable n replaces .
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Dependence of sound speed is almost same as for isothermal assumption, because water 
has higher heat capacity then air but with Mvz = 1 is speed same as adiabatic. 
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Figure 7  Comparison – adiabatic system (p = 1 MPa) 

9. Conclusion 
Sound speed in the water is markedly influenced by the included air. Computation gives 
similar results for the both adiabatic and isothermal assumptions. It is interesting that the 
sound speed in the mixture is in the major part of the area of the graph O – v lower than sound 
speed in the air. 
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