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Summary: This paper is focused on the study of the second viscosity of the fluids 
with the emphasis on the pressure pulsations solution in the hydraulic systems.  
The methodic comes out from the nonequilibrium thermodynamics.  

 
 
1. INTRODUCTION 

 
Using its laws the irreversible stress tensor and two viscosity coefficients, which depend 

on the rate-of-strain tensor and the spherical deformation velocity tensor will be derived. Bulk 
viscosity coefficient will be determined on the pressure wave’s basis for the water.  

 
 
2. IRREVERSIBLE STRESS TENSOR 
 
It is possible to express the generalized equation for the irreversible stress tensor ijΠ  

according to Stokes as rate-of-strain tensor dependence:  
 

ijij cη2=Π       (1) 
 
where η represents the shear viscosity. In the experiments with the compressible liquids 

there was shown, that the absorption capacity of the sound waves, respectively of the pressure 
waves in liquids, is higher than corresponds to the dynamic viscosity effect. Stokes has 
already assumed that it will be necessary to extend the equation (1) by the so called second 
viscosity λ implementation:      

 
kkijijij cc λδη +=Π 2      (2) 

 
This equation is founded on the nonequilibrium thermodynamic methods, using the 

Onsager reciprocity relations [10] between the irreversible flows iJ  and generalized 
thermodynamic forces jX  in the form: i ij jJ L X= , where ijL  are so called phenomenological 
coefficients of the thermodynamical force transfer.    
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If we confine oneself to the isotropic medium and use the Currie [6] principle (the 
generalized thermodynamic force of certain tensor size can evoke the flow of the same tensor 
size) it is possible to write the deviator of the irreversible shear stress tensor ijD  as: 

ijij dD η2= , where ijd  is deviator of the deformation velocity tensor (2). 

 
For the spherical stress tensor (scalar flow) it holds:  
 

1   ,  0
3 kk kkcξ ξΠ = 〉  is so called volumetric viscosity, dependent on η . (3) 

 
So: 
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If we compare (2)&(4), we can find the relationship between the second λ  and volumetric 

ξ  viscosity in form:  
 

2
3

λ ξ η= −       (5) 

 
In contemporary literature and the most up-to-date software packages it is assumed, 

that 2
3

λ η= − , even if it is known that this term holds just for the monoatomic gas and 

providing that the pressure equals to the summation average of the main tensions [9]. But this 
assumption excepts the existence of the volumetric viscosity, which is split between the 
results of nonequilibrium thermomechanics. See for example S. de Groot, P. Mazur [4] 

 
 
3. SOLUTION METHOD 
 
The dependence of the irreversible stress tensor on the volume viscosity is given by the 

Onsager relations between the irreversible flows iJ  and generalized thermodynamic forces 

jX  in the form: 
 

i ij jJ L X=        (6) 
 
From the following term implies that the thermodynamic forces jX influence is developed 

to the irreversible thermodynamic flows in the same time. ijL are the coefficients of the 
thermodynamic forces transfer and present the material constants independent on time.  

 
 

Engineering Mechanics 2009, Svratka, Czech Republic, May 11 – 14

350



So: 
 

( ) ( )i ij jJ t L X t= .      (7) 
 
For the viscoelastic materials and liquids this assumption was not generally proved. On 

the experimental basis is shown that the flow depends on the whole history of thermodynamic 
forces changes.  

 
If there are the flows iJ dependent on the whole forces history ( )jX t , is it possible to 

write the last equation in the form: 
 

( ) ( ) ( )
0

 
t

i ij jJ t L t X dTτ τ= −∫      (8) 

 
where ( )ijL t is possible to understand as a liquid memory. In the concrete for the scalar 

flow of the irreversible spherical stress tensor holds: 
 

( ) ( )
0

1  
3

t

kk kkt C dTξ τ τΠ = −∫     (9) 

 
where ( )tξ  is the volumetric liquid memory 
 
The dependence on the frequency is possible to express from the Laplace image of the last 

equation:  
 

{ } ( ) ( ){ } { }kkKKkk CLtLsHL ξ==Π
3
1

3
1    (10) 

 
If we specify:  
 

( ){ } ( )stL κξ =       (11a) 
{ } ( )kk kkL C W s=       (11b) 

 
For s i= Ω  it holds: 
 

( ) ( ) ( )1 .
3 kk kkH i i W iκΩ = Ω Ω     (12) 

 
The κ  magnitude is possible to identify by the pressure wave dampening for the exactly 

known boundary conditions, for example in the pipe with closed endings.  
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4. SECOND VISCOSITY APPROXIMATE IDENTIFICATION  
 
The second viscosity identification is based on the pressure wave eigen shape study in the 

circle cross section pipe with closed endings.  
 
For this case is better to come out of the Navier-Stokes equation in the form:  

 

0
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And the continuity equation: 0
x
cv

t
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where ic is the liquid velocity coordinate, p is the pressure and ρ  is the density 
 
In as much as we will study the liquid oscillation (the pressure wave propagation) in the 

pipe axis direction, in the equations (6) and (7) are vanished the convective terms. 
In the continuity equation means the symbol v the pressure wave propagation velocity (the 

sound velocity in the liquid) and will also be identified.  
By the equation (6) and (7) unification is possible to write the wave equation for the 

pressure wave propagation in the form: 
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The magnitudes of λ  and ν  will be set using the eigen oscillation analysis of the pressure 

function. The eigen shapes of the pressure wave ( ),ih x s  are defined by the equation:  
 

0hvhs2hs 22 =Δ⋅−Δ⋅⋅
ρ

λ+η⋅
−⋅    (16) 

where Δ is the Laplace operator and s is the eigen number. 
 
Now let’s do the scalar product of the equation (16) by the function h*, that is conjugate 

imaginary function to the h:  
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V
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V
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It is necessary to add the boundary conditions for the equations (15), (16). So assume the 

blanking of the pipe ends as it holds the boundary condition (18).   
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Fig. 1 The experiment schema 
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Using these boundary conditions is possible the equation (17) rewrite in the form: 
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In the equation means: 
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k – is the magnitude of the wave vector, so:  

 

Λ
Λ
π⋅

= ,2k - wave length    (21) 

 
For the first wave shape it holds: 2LΛ =  
 
The λ  and ν  magnitudes are derived from the wave eigen values and eigen frequencies 

analysis: 
 

η⋅−
π

⋅ρ⋅α⋅−
=λ 2L2

2

2

, 22Lv ω+α⋅
π

= ,     0<α  (22) 

 
Above mentioned equations is possible to use just for the cases of wide difference 

between the eigen frequency of the pipe and liquid.  
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Out of the executed experiments it is confirmed, that the equations are valid for cases of 
very small centrifugal mass of both pipe covers. In other case it is necessary to assume the 
pipe/liquid interaction, because the wave length is changing by the pipe oscillation. The pipe 
oscillation causes the change of the node points of the pressure wave eigen shape. 

 
 
5. THE VERIFIED MODEL OF THE SECOND VISCOSITY IDENTIFICATION  

 
Fig. 2 shows the principal schema of the experiment that is based on the shock wave 

creation and the following liquid oscillation at the pipe interaction.  

 
Fig 2 The schema of the experimental pipe 

 
The shock wave is created by the direct stroke of the hammer to the pipe cover in the pipe 

axis direction, see Fig. 1. The pipe includes three sensors for the pressure measurement, as is 
shown in the Fig. 2. The liquid is deaerated before the experiment. The measurement was 
done for the different values of the static pressure up to 100MPa.  

The photo of the measuring device is in the Fig. 3. Fig. 4 shows the pressure dependence 
on time (the sensor 1).  

 

 
Fig. 3 The measuring device 
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Fig. 4 The measured pressure in the time dependence 
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Fig. 5 The measured pressure after DFT  

 
The signal was processed by the fast discrete Fourier transform, see Fig. 5. From the 

notification were set the real ( )α  and imaginary  Ω  part of the eigen number s for the first 
pressure wave shape:   

 

Ω±Δ⋅
π

= if
3

s       (23)  

 
The interacting oscillation of the liquid and the pipe was solved in the linear area using the 

transfer matrix of the liquid P, pipe Pe and the boundary conditions (the pipe covers mass). 
The boundary condition influence is given by the matrix Po. 

In the transfer matrix is also implied the second viscosity effect, that is derived from the 
hypothesis of the zero determinant value.   
 

0det =
−
−

PP
EP

C

0 ,  TPPP 0C ⋅=     (24) 
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Fig. 6 Amplitude-frequency characteristic 

 
By the eigen value (23) establishing into the equation (24) is possible to analyze the 

second viscosity of the liquid. Figs. 7-10 show the experimental results.  
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Fig. 7 The sound velocity in the static pressure dependence  
. 
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Fig. 8 The second viscosity in the static pressure dependence, frequency 6kHz 
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Fig. 9 The second viscosity in the static pressure dependence, frequency 700Hz  
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Fig. 10 The second viscosity in the frequency dependence  
 
On the experimental results bases is possible to express the second viscosity-frequency 
dependence in the 〉〈∈ 30000 , 15.0f  interval as: 
 

( ) ( )0123,16 f104850,9 −⋅=λ      (25) 
 
 

6. CONCLUSION 
 
Out of the results it is visible that for the low pressures the absorbed air effects the results, 

but for the higher pressures became the effect insignificant.  
Very important is especially the Fig. 10, where is shown the second viscosity dependence 

on the frequency, which is very significant.  
Out of this dependence is clearly visible, that the second viscosity affects the memory 

interpretation. So the further solution if this problematic is focused on this function searching.  
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