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Summary: In this paper, we present a study of the dynamical behavior in a 
Kelvin type gyrostat satellite. We firstly obtain the Hamiltonian equations of our 
model by using Cardan angles as generalized coordinates. Then, we make this 
Hamiltonian dimensionless and calculate motion equations for this dimensionless 
system. The study of the Poincare’s sections of this system shows us that chaotic 
motion regimes are present for specific parameter values. The main goal of this 
work is the finding of stabilizing orbits by using a control technique, the fuzzy 
control of Poincare map method, so that it can be applied to stabilize special 
periodic orbits in this system.  Finally, we expect that the technique can be useful 
for a better understanding of control theory and their applications in gyrostat 
problems. 

 

1. INTRODUCTION 

A Kelvin type satellite consists of two rigid parts, an axi-symmetric rotor, R inside a bigger 
platform, P. We assume that the center of mass of our satellite is rotating on a circular orbit 
around a central mass which can be the Earth and that the rotor angular velocity is very high. 
Also, the platform can rotate slowly in comparison to rotor's velocity. These satellites are 
known as gyrostat satellites [1].  

Chaotic motions in nonlinear systems arise in many real problems. Investigating chaos in 
satellite dynamic was started in the works by Liu et al. [2, 3]. The authors have shown that 
chaotic motion is possible in different kinds of satellites such as satellite in circular orbits [4] 
and also gyrostats in a central gravitational field [5-9].Since the pioneering work on 
controlling chaos due to Ott, Grebogi, and Yorke [10], named OGY, different control 
schemes have been proposed that allow one to obtain a desired response from a dynamical 
system by applying some small but accurately chosen perturbations [11,12].  

The methods stated to control chaos can be classified in feedback and non-feedback 
methods [13,14], depending on how they interact with the system. Feedback methods of chaos 
control, as the celebrated OGY [10], stabilize one of the unstable orbits that lie in the chaotic 
attractor by using small state-dependent perturbations into the system. However, in 
experimental implementations, the fast response that these methods require cannot usually be 
provided. For these situations, non-feedback methods are more useful. Non-feedback methods 
have been mainly used to suppress chaos in periodically driven dynamical systems. 
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Also in the period of time of OGY work, the Pyragas method, based on delayed feedback 
control was presented [12, 15]. In recent years, some chaos controller based on fuzzy systems, 
have been proposed [16-18]. In [16] the idea of chaos control by fuzzy systems is introduced 
and the Chua’s circuit was controlled via fuzzy systems. The fuzzy estimation of OGY and 
Pyragas controllers are also used for chaos control and is applied to a Bonhoeffer-Van der Pol 
oscillators as shown in Ref. [18]. In Ref. [19] the author considered the fuzzy control of 
Poincaré maps, and two algorithms for chaos control based on fuzzy systems are proposed for 
stabilizing the fixed points or unstable periodic orbits. The first algorithm provides a fuzzy 
system for the controller using the clustering technique and the second one design the 
controller by fuzzy table look up method. The advantage of the proposed algorithms is that 
only the state variables of the system on a Poincaré section are used for chaos control and 
there is no need to know the mathematical model of the system and its Poincaré map. Because 
these controllers are constructed on the Poincaré sections, the method of this paper can be 
used for both discrete and continuous systems.  

In this paper, nonlinear governing equations of a gyrostat without any restriction to small 
angles or perturbations are adapted from the work described in Ref. [1]. Later, attitude 
dynamic of this system is investigated in Poincare map. The fixed points in these Poincare 
maps are found using a recursive method and stabilized using the fuzzy control method 
presented in [19].  

This paper is organized as follows. In Sec. II we present a complete description of our 
model, the Kelvin type satellite. Section III presents a complete estimation of the parameters 
of our model. Sec. IV provides a full description of the control method used for the 
stabilization of our system, namely Fuzzy Control. Numerical evidence of the robustness of 
the Fuzzy Control technique is given in Sec. V. Conclusions and discussions of the main 
results of this paper are presented in Sec.VI. 

2. MODEL DESCRIPTION 

We now introduce our prototype model, the Kelvin type Gyrostat Satellite. In their equations, 
we assume that both gyrostat and rotors are rotating about axis . A Cxyz coordinate system 
is fixed to the gyrostat. The center of mass, C, rotates around the Earth in a circular orbit. 

and are three Cardan angels about axis and , respectively. Kinematic and 
potential energy of this system can be calculated as  
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around the Earth, and is a cyclic coordinate. So, we can conclude that is constant during 
the motion. Now, if we assume that the angular momentum of the rotor is constant too we can 
write  
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Using this relation, the Hamiltonian of this system can be obtained as  
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Now, by introducing dimensionless variables AHt=τ  and 
HA
Pp i

i = we will have 
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where  is the dimensionless Hamiltonian equation. In this equation, h AC=1λ ,  

Ω= 02 ωλ and  
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HA 2Ω=γ  is the ratio of gravitational energy of the rotational energy of the satellite. 

By letting , the equations of motion will be obtained as  1=h
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Studying the behaviour of chaotic systems is much simpler when discretized. The idea of 
reducing the study of continuous time systems to the study of an associated discrete time 
system is due to Poincaré (1899). As a matter of fact, associated to an ordinary differential 
equation we can construct a discrete time dynamical system which is called a Poincaré map 
[20] 

(8) ( ))(),()1( nunXPnX =+ , 

where  is the Poincaré map, (.,.)P )(nX  is the state vector on the Poincaré section in which 
the Poincaré map is defined, and u  is the controlling action. The fixed point for a chaotic 
system is defined as the state which maps into itself through the Poincaré map. In other 
words, this specific trajectory of the system, beginning from a fixed point, returns to this point 
after a specific time named period. In Fig. 1 and Fig. 2 Poincaré map of this equations for 
different values of parameters are shown. As it is easily observed, in each of them there are 
different types of orbits (periodic, chaotic, etc) that can be stabilized by implementing our 
fuzzy control scheme we describe in the next section. We also observe KAM islands which 
are typical in Hamiltonian systems. 
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Figure 1 Poincaré map of our Kelvin type Gyrostat satellite for parameter values as follows: 
3.0=γ and 0.2,0.1,0.2 32 =1 == λλλ .  Different dynamical behaviors are observed as periodic, 

chaotic, etc. 
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Figure 2 Poincaré map of our Kelvin type Gyrostat satellite for parameter values as follows 
0.2=γ and  5.0,0.1,5.0 32 ===1 λλλ . As in Fig. 1 different dynamical behaviors can be 

observed. 
 

 

The chaotic system starting from an arbitrary point exhibits erratic behavior in the Poincaré 
map which fills specific areas in this surface. With an appropriate control of , the system 
can be forced towards its fixed point which is the desired state in most cases. In this case the 
chaotic behaviour of the system transforms into a periodic behaviour. It is assumed that the 
dynamic equation of the system is unknown, but the state vector, 

)(nu

X )(n , is obtainable, then the 
main goal is to design an identifier/controller scheme to stabilize the unstable fixed points of 
the system as the authors stated in Ref. [19]. 

 
3. Parameter Estimation  

The parameter AC=1λ  defined previously is the degree of oblateness of the satellite. For 
typical geometrical shapes we can assume that this degree is of order 1. As an example, in a 

cube this degree is exactly equal to 1 and in a cylinder is 22
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of the cylinder, and h  is its height.  We can simply assume that this parameter is constant and 
for example, equal to 2. We are not going to use this parameter as action control in our fuzzy 
system. The change of moment of inertia has some other effects on the equations of motions 
and also other parameters. In fact, we can not look at this parameter as a free variable and 
change it without considering these effects on the whole system.  

For a satellite rotating around the Earth it is well known that  and 
. Therefore, angular velocity of the satellite around the Earth is small, and 
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of order  and the angular velocity of the platform can have different values. In 
especial flight missions, it is necessary for spacecraft to keep its orientation to the Earth. 
Hence, the angular velocity of the satellite, around its major axis, should be equal to its orbital 
angular velocity and therefore, . Control of this value and keeping  is a 
goal of control systems in these satellites. In some other types which the orientation of the 
satellite is not a control goal of the system, we can assume it as an action control for obtaining 
especial maneuvers and orientations. The range of variation of  in theses spacecrafts could 
be very wide. If we assume angular velocity of satellite around its major axis, equal to 
unity we will have . Using  the relation stated in Eq. 5(c) and by changing the 
angular velocity of the rotor we can change  in the range of . Variation in 
this parameter is a result of variations in the angular velocity of rotor. On the other hand, the 
angular velocity of the rotor could not exceed especial values depending on the rotor 
characteristics. So, this range of variation for  can not be obtained in real cases.  
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The last control parameter in this system is 3λ . If the rotor, R, contains only 5 % of the 

whole satellite weight we will have, =AR 1.0C . Also, we know that . Now, if we 
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By changing , both  and  will be change. Also, these two parameters always 
appear in equations of motions together. So, we can let  and choose it as the control 
input of control system. Range of practical control inputs in this system is so that the 
acceptable ranges for  and are satisfied.  
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Now, by using the fuzzy control method developed in Ref. [19] we can design a fuzzy 
controller to stabilize periodic orbits in the Poincaré map.  

 

4. FUZZY CONTROL METHOD 

One of the methods available for constructing a fuzzy model from input-output data pairs is 
the fuzzy clustering method. This method is especially useful when the number of input-
output pairs is limited. The basic idea is to group the input-output pairs into clusters and use a 
specific rule for each cluster, in the form of  

(9) IF x  in , THEN ][ l
cxA y  in , ][ l

cyB

where  and  are input and output fuzzy sets with centers at  and , respectively 
and l  is the number of cluster. There are several algorithms to make a fuzzy system based on 
the clustering. One of the simplest methods is the nearest neighborhood algorithm. This 
method is explained extensively in many fuzzy control books such as shown in Ref. [22]. The 
designed fuzzy system using singleton fuzzifier, products inference engine and center average 
deffuzifier based on k input-output pair clustered in this method can be written as follows: 
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where M  is the number of clusters constructed,  denotes the center of the lth cluster,  
is the summation of all output data gathered in cluster l and  is the number of data points 
gathered in cluster l after examining k data points. In the above equation 

l
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σ  is a smoothing 

parameter. The smaller the σ  the smaller the matching error becomes, but the less smooth the 
. The matching error is the difference between the actual output and the one obtained 

from fuzzy model. It should be noted that the number of clusters depends on the distribution 
of input points and the radius r.  

)(xf k

The following algorithm is adapted from Ref. [19] to construct a suitable controller for this 
system. For further studies you can return to the original paper. Now, we provide a complete 
description of the algorithm implemented in order to stabilize the orbits in our model.  

5. I Algorithm: 

The Fuzzy algorithm, can be built according to the following steps:  

STEP 1: Let )1(X  be an arbitrary point in the domain of Poincaré map, then choose a random 
value for  in its prescribed domain, and measure )1(u )2(X  due to problem assumptions.  

STEP 2: Repeat step 1, by setting )2(X  as an starting point to generate  by using a 
random value for . 

)3(X
)2(u

STEP 3: By iterating step 2, a set of ( ){ }NkkukXkX ,...,2,1,)(),(),1( =+=Γ  for a large N, is 
generated.  

STEP 4: The input-output data pairs for the fuzzy clustering algorithm are obtained according 
to: 

STEP 4.1: Let  and . 0=j 1=k

STEP 4.2: Consider ( ))(),(),1( kukXkX + , then examine the following condition  

(11) ,)()1( FF XkXmXkX  −≤−+

where  is selected arbitrarily and called the approaching factor. If the above 
condition is satisfied then let ,

10 << m
1+= jj )(0 kXX j = , . The jth input-output data pair 

is let 

)(0 kuu j =

( )jj uX 00 ; . 

STEP 4.3: Iterate step 4.2. by . 1+= kk

STEP 5: Now the clustering algorithm is applied on ( )jj uX 00 ;  to obtainU (.) . 
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6. NUMERICAL RESULTS 

The periodic orbits of the Poinc
method. The central periodic or

aré map in Fig. 1 and Fig. 2 can be found by using a recursive 
bit shown in Fig. 1 takes place for:  

(9) 

Results which are obtained from fuzzy control are shown in Figs. (3-4). Figure 3 and figure 
4 show convergence to the fixed point of the Fig. 1 once our fuzzy control is implemented. 
Af
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ter, approximately, 100 iterations in our control scheme, our orbit trend to a fixed point. 

Finally, Fig. 5 shows the phase space of our model after applying our control method in 
which we easily observe the convergence to a fixed point for which the stabilization

mpletely achieved. 
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Figure 3 Trend of 1θ
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Figure 4 Trend of convergence to the fixed point on Poincare map, in which horizontal 

axis shows number of iterations.  
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Figure 5 Convergence of points on 
11 θθ p−  in the Poincaré map. The stabilization in a periodic 

orbit is obtained. 
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7. CONCLUDING REMARKS 

Summarizing, we have implemented a control technique to stabilize orbits in chaotic or 
periodic regimes in a Kelvin type gyrostat satellite. The Hamiltonian equations of our model 
are obtained by using Cardan angles as generalized coordinates. Our control scheme, named 
Fuzzy control, is fully described and applied to stabilize periodic or chaotic orbits. This 
technique is successfully applied for special orbits found in phase space. Finally, we expect 
our technique can be applied in other gyrostat models and different physical situations where 
control techniques are required. 
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