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Summary: The pendulum damper modelled as a two degree of freedom strongly
non-linear auto-parametric system is investigated using two approximate differen-
tial systems. Uni-directional harmonic external excitation at the suspension point
is considered. Semi-trivial solutions and their stability are analyzed. The thorough
analysis of the non-linear system using less simplification than it is used in the pa-
per (Náprstek & Fischer, 2007) is performed. Both approaches are compared and
conclusions are drawn.

Figure 1: The pendulum
and coordinate systems.

1. Introduction

Many structures encountered in the civil and mechanical engineer-
ing are equipped with various devices for reducing dynamic re-
sponse component due to external excitations. Among other low
cost passive systems the pendulum dampers are still very popular
for their reliability and simple maintenance, see e.g. (Haxton &
Barr, 1972). However the dynamic behaviour of such a pendulum
is significantly more complex than it is supposed by a widely used
simple linear SDOF model working in the (xz) vertical plane only,
see Figure 1. The conventional linear model is satisfactory only if
the kinematic excitation a(t) introduced at the suspension point
is very small in amplitude and if its frequency remains outside a
resonance frequency domain.

2. Mechanical energy balance

Let us consider the kinematic excitation a(t) at the suspension point in the x direction only.
The natural choice of the coordinate system suitable for description of the movement of the
pendulum would be the spherical coordinate system described by the angles θ (in the xz plane),
ϕ (diversion from the xz plane) and radius r = const (see Fig. 1). However, such a choice
does not allow to consider the angle ϕ as a perturbation of the pure planar motion described
by θ, r only. Indeed, even for a small transversal motion (in the y direction), the full range
ϕ ∈ 〈0, 2π) occurs. Thus the mechanical energy balance conditions has to be written in the
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Cartesian coordinates (ξ(t) = ξ, ζ(t) = ζ, η(t) = η). The kinetic and potential energies T, V
are described by:

T = m(ξ̇2 + ζ̇2 + η̇2 + 2ȧξ̇ + ȧ2)/2 (1)
V = mgη (2)

and the geometric constraint of the suspension is expressed as:

ξ2 + ζ2 + (1− η)2 = r2 (3)

where m, r - mass and suspension length of the pendulum
a = a(t) - kinematic excitation at the suspension point

From the relation between the spherical and Cartesian coordinates and the geometric constraint
(3) it follows:

η = r(1− cos θ) ; η̇2 = r2θ̇2 sin2 θ ; sin θ =
%

r
where %2 = ξ2 + ζ2 (4)

Hence the expressions for kinetic and potential energies (θ(t) = θ, ϕ(t) = ϕ) are:

T =
m

2
[r2(θ̇2 + ϕ̇2 sin2 θ) + 2rȧ(θ̇ cos θ cos ϕ− ϕ̇ sin θ sin ϕ) + ȧ2] (a)

V = mgr(1− cos θ) (b)

 (5)

A hypothesis that the amplitude of θ(t) is small makes acceptable an approximation:

θ = arcsin
%

r
≈ %

r
+

1

6

%3

r3
⇒ θ̇2 =

%̇2

r2

(
1 +

%2

2r2

)2

(6)

The equations of the motion follows from the Lagrangian principle:

∂t(∂χ̇T )− ∂χT + ∂χV = 0 , for χ ∈ {ξ, ϕ} (7)

Using (1), (2), (4), (6) and (7) an approximate Lagrangian system in the x, y coordinates for the
components ξ, ζ on the level O(ε6); ε2 = (ξ2 +ζ2)/r2 can be obtained. The approximate linear
damping with the relative scale ωb equivalent in both components ξ, ζ will be included, giving
the differential system:

ξ̈ + 2ωbξ̇ + ξ

(
1 +

ξ2 + ζ2

2r2

)ω2
0 +

((ξ2 + ζ2)
q
)
2

4r4
+

(
1 + ξ2+ζ2

2r2

)
(ξ2 + ζ2)

q q
2r2

=−ä

ζ̈ + 2ωbζ̇ + ζ

(
1 +

ξ2 + ζ2

2r2

)ω2
0 +

((ξ2 + ζ2)
q
)
2

4r4
+

(
1 + ξ2+ζ2

2r2

)
(ξ2 + ζ2)

q q
2r2

= 0

(8)

where ω2
0 = g/r. Taking into account the additional simplification,(
1 +

(ξ2 + ζ2)

2r2

)2

≈ 1,
χ

r4

(
1 +

(ξ2 + ζ2)

2r2

)(
(ξ2 + ζ2)

q )2 ≈ 0 for χ ∈ {ξ, ζ} (9)
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the simplified form of the differential system can be obtained (see Náprstek & Fischer (2007)):

ξ̈ +
1

2r2
ξ(ξ2 + ζ2)

q q
+ 2ωbξ̇ + ω2

0(ξ +
1

2r2
ξ(ξ2 + ζ2)) = −ä

ζ̈ +
1

2r2
ζ(ξ2 + ζ2)

q q
+ 2ωbζ̇ + ω2

0(ζ +
1

2r2
ζ(ξ2 + ζ2)) = 0

(10)

In both simplified and complete systems, neglecting the non-linear terms will result in two
independent equations. Each of the components ξ, ζ can be separately considered as arbitrar-
ily small and independently and continuously limited to zero. Therefore the system is auto-
parametric and respective procedures can be applied (Tondl et al., 2000).

3. Semi-trivial solution

To investigate the semi-trivial solution let us substitute ζ = 0 into Eqs (8), (10) and specify the
excitation to be harmonic (see Tondl (1991) for details): a(t) = a0 sin ωt.

The semi-trivial solution of Eqs (8) or (10) should be searched in the form:

ξ0 = ac cos ωt + as sin ωt ; ζ0 = 0 (11)

The coefficients ac, as in general should be considered as functions of time: ac = ac(t),
as = as(t). If a stationary solution exists for a given excitation frequency ω, then ac, as should
converge to constants for increasing t → ∞. For this reason coefficients ac, as can be consid-
ered constant only under special conditions when stable stationary response can be expected.

Let us substitute (11) into Eq. (8) and (10), multiply them by sin(ωt) or cos(ωt) and integrate
the resulting expressions over the interval t ∈ (0, 2π/ω). The described operation (so called
harmonic balance operation) results for each of the equations (8) or (10) in an algebraic system
consisting of two equations. For the simplified case of Eq. (10) it is:

ac

(
(ω2

0 − ω2) +
1

2r2

(
3

4
ω2

0 − ω2
)

(a2
c + a2

s)
)

+ 2ωωb · as = 0

as

(
(ω2

0 − ω2) +
1

2r2

(
3

4
ω2

0 − ω2
)

(a2
c + a2

s)
)
− 2ωωb · ac = a0 · ω2

(12)

If both equations are be raised to the second power and summed together, then, finally, the
equation for the amplitude of the response arises (R2

0 = a2
c + a2

s):

R2
0

4ω2ω2
b +

(
(ω2 − ω2

0) +
R2

0

2r2

(
ω2 − 3

4
ω2

0

))2
− 4ω4a2

0 = 0 (13)

Applying the same procedure to the original system (8), one can get a similar equation for the
amplitude:

R2
0

4ω2ω2
b +

(
(ω2 − ω2

0) +
R2

0

2r2

(
ω2 − 3

4
ω2

0

)
+ ω2 R4

0

8r4

(
3 +

5R2
0

8r2

))2
− ω4a2

0 = 0 (14)

The Eqs (13) and (14) are known as resonance curves. They express the dependence of the
amplitude R2

0 of the solution (response) on the excitation frequency. Both curves are demon-
strated in Figure 2. Depending on the parameters a0, ωb and ω, this relations can lose their
unique character in some intervals of ω.
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4. Perturbation of the semi-trivial solution

To assess the stability of the semi-trivial solution we will endow the semi-trivial solution (11)
with small (in the meaning of a norm) perturbations u, v in both coordinates:

ξ = ξ0 + u u = u(t) = uc cos ωt + us sin ωt
ζ = 0 + v v = v(t) = vc cos ωt + vs sin ωt

(15)

As the perturbations are expected to be small, only the first powers of u, v and their derivatives
are kept after inserting expressions (15) into Eqs (8) and (10). After the harmonic balance
operation and some algebra one obtain two linear algebraic systems for uc, us and vc, vs. For
the simplified case (10) it reads:

(
w1 w2

w3 w1

)(
uc

us

)
= 0 ;

(
z1 z2

z3 z1

)(
vc

vs

)
= 0 ; (16)

where it has been denoted:

w1 =
[
2ωωb + 1

4r2 Ω1acas

]
; w2 =

[
2ωωb + 1

4r2 Ω1acas

]
; w3 =

[
1

4r2 Ω1acas − 2ωωb

]
z1 =

[
Ω2 + 1

8r2 (Ω1a
2
c + Ω3a

2
s)
]

; z2 =
[

1
4r2 Ω4acas + 2ωωb

]
; z3 =

[
1

4r2 Ω4acas − 2ωωb

]
Ω1 = 3ω2

0 − 4ω2 ; Ω2 = ω2
0 − ω2 ; Ω3 = ω2

0 + 4ω2 ; Ω4 = ω2
0 − 4ω2

The both systems (16) are homogeneous and independent of excitation amplitude. They contain
only characteristics of the dynamic system and the excitation frequency as independent param-
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Figure 2: Resonance curves (a, a′) (thick lines) and stability limits (thin lines) of the semi-trivial
solution (b, b′, c, c′) computed using the original (solid lines a, b, c) and simplified (dashed lines
a′, b′, c′) equations.
Curves (b, b′): in (xz) plane - ξ stability limit, Eqs (17), (19) ;
Curves (c, c′): out of (xz) plane - ζ stability limit, Eqs (18), (20).
Interval i corresponds to the non-stability interval of the original formulas (17-18). Interval i’
corresponds to the non-stability interval of the simplified formulas (19-20).
Values used: r = 1, g = 9.81, ωb = 0.075, a0 = 0.05
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eters. Consequently to receive a non-trivial solution for uc, us or vc, vs, the determinant of the
systems (16) must equal zero. This rationale leads to two independent equations:

1

2r2
Ω1R

2
0

(
Ω2 +

3

32r2
Ω1R

2
0

)
+ Ω2

2 + 4ω2ω2
b = 0 (17)

1

2r2
R2

0

(
ω0Ω2 +

1

32r2
Ω1Ω3R

2
0

)
+ Ω2

2 + 4ω2ω2
b = 0 (18)

Similar equations can also be formulated for the original system (8)

175ω4R12
0

4096r12
+

45ω4R10
0

128r10
+

5ω2 (56ω2 − 15ω2
0) R8

0

256r8
+

ω2 (17ω2 − 14ω2
0) R6

0

8r6
+

+
3
(
−3ω2Ω2 + (1

4
Ω1)

2
)
R4

0

4r4
+

Ω2Ω1R
2
0

2r2
+ Ω2

2 + 4ω2ω2
b = 0

(19)

− 5ω4R12
0

4096r12
− ω4R10

0

64r10
− ω2 (24ω2 + ω2

0) R8
0

256r8
− ω2 (3ω2 + ω2

0) R6
0

16r6
+

+
ω2

0 (3ω2
0 − 8ω2) R4

0

64r4
+

ω2
0Ω2R

2
0

2r2
+ Ω2

2 + 4ω2ω2
b = 0

(20)

The Eqs (17-18) and (19-20) can be interpreted as limits dividing the plane (R2
0, ω) into the

stable and unstable domains. For given parameters r, ωb, a0 the unstable interval of excitation
frequency is defined by the position of the intersections of the resonance curve with the corre-
sponding stability limits (points E, F in Figure 2).

5. Post-critical response in the resonance domain

Let us try to assume a more general expressions as the basic solution:

ξ(t) = ac(t) cos ωt + as(t) sin ωt ; ζ(t) = bc(t) cos ωt + bs(t) sin ωt (21)

Increasing the number of unknown functions to four, one can exploit a possibility to formulate
two arbitrarily selectable additional conditions. Then the following expressions for the first
derivatives of the general solution (21) can be stated:

ξ̇(t) = −acω sin ωt + asω cos ωt ; ζ̇(t) = −bcω sin ωt + bsω cos ωt (22)

where ac = ac(t), as = as(t), bc = bc(t), bs = bs(t). Let us insert expressions (21), (22) in the
simplified differential system (10) and apply the operation of the harmonic balance once again.
After dull routine work one obtain the differential system for amplitudes ac, as, bc, bs, whose
system matrix A depends only on ac, as, bc, bs, ω:

A


ȧc

ȧs

ḃc

ḃs

=−1

2


ac(8Ω2r

2 + R2
AΩ1) + 2bsS

2
AΩ4 + 4asωbωr2

as(8Ω2r
2 + R2

AΩ1) + 2bcS
2
AΩ4 + 4acωbωr2 +8ω2a0r

2

bc(8Ω2r
2 + R2

AΩ1) + 2asS
2
AΩ4 + 4bsωbωr2

bs(8Ω2r
2 + R2

AΩ1) + 2acS
2
AΩ4 + 4bcωbωr2

 (23)

where it has been denoted

R2
A = a2

c + a2
s + b2

c + b2
s ; S2

A = asbc − acbs (24)
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It should be remembered that the validity of Eqs (23) is limited by conditions that the har-
monic balance operation is meaningful. In order to guarantee the applicability of this operation,
the ”variability” of amplitudes ac, as, bc, bs must be significantly lower than that of the function
sin ωt.

The explicit solution of Eqs (23) is generally not possible in the resonance interval. However,
from the numerical analysis can be seen, that at least part of the resonance interval can be
described by a steady state solution. The other part of the resonance interval, where the transient
solution takes place, will not be discussed here.

The steady state response is characterized by constant amplitudes (for t →∞). This means
that the time derivatives ȧc, ȧs, ḃc, ḃs vanish for large t. The left-hand side of Eq. (23) vanishes
and Eq. (23) reduces itself into the algebraic system. After tedious work, the relation between
R2

A, S2
A and ω can be deduced from Eq. (23), where the left hand side was substituted by the

zero vector:

R2
A

(
(8Ω2r

2 + R2
AΩ1)

2
+ 4 (4ω2ω2

br
4 + S4

AΩ2
4)
)
− 8S4

A (8Ω2r
2 + R2

AΩ1) Ω4 = 64r4a2
0ω

4

S2
A

(
2R2

A (8Ω2r
2 + R2

AΩ1) Ω4 − (8Ω2r
2 + R2

AΩ1)
2 − 16ω2ω2

br
4 − 4S4

AΩ2
4

)
= 0 (25)

Parameter R2
A can be interpreted as a generalized total or effective amplitude including both

components (21). As regards the S2
A, it represents a certain characteristics of their phase shift.

If S2
A = 0 the vectors [ac, as], [bc, bs] are co-linear. It represents the motion in the vertical plane.

Indeed, putting S2
A = 0 into the first equation of (25) one obtains the formula for the semi-trivial

resonance curve (13). The case S2
A 6= 0 implies motion out of the vertical plane. For this case,

an analysis of the system (25) was carried out, but it is beyond the scope of this contribution.
Using the procedure described above, a similar relation was also derived for the original

system (8).

16ω4R2
A

(
R4

A − 4S4
A

)(
16R4

A

(
R4

A − 4S4
A

)
+ 5

(
R4

A − 4S4
A

)2
+ 4R8

A

)
+ (2r)264ω4

(
R4

A − 4S4
A

) (
10R4

A

(
R4

A − 4S4
A

)
+
(
R4

A − 4S4
A

)2
+ 4R8

A

)
+ (2r)416ω2R2

A

(
R4

A − 4S4
A

) ((
32ω2 − 5ω2

0

) (
R4

A − 4S4
A

)
+ 2

(
12ω2 − 5ω2

0

)
R4

A

)
+ (2r)632ω2

(
R4

A − 4S4
A

) ((
5ω2 − 2ω2

0

) (
R4

A − 4S4
A

)
+ 12

(
ω2 − ω2

0

)
R4

A

)
+ (2r)84R2

A

((
8
(
ω2 − ω2

0

) (
8ω2 − ω2

0

)
− 3ω4

0

) (
R4

A − 4S4
A

)
+ 4ω4

0R
4
A

)
+ (2r)1016

((
ω2 − ω2

0

) (
4ω2 − ω2

0

) (
R4

A − 4S4
A

)
− 2ω2

0

(
ω2 − ω2

0

)
R4

A

)
+ (2r)1216R2

A

(
4ω2ω2

b +
(
ω2 − ω2

0

)2
)

= (2r)1216a2
0ω

4

(26)

S2
A

[
16ω4S2

A

(
R8

A

(
R4

A − 4S4
A

)
− 3R4

A

(
R4

A − 4S4
A

)2
+ 8

(
R4

A − 2S4
A

)3 −R12
A

)
+ (2r)2256ω4R6

AS2
A

(
R4

A − 4S4
A

)
+ (2r)416ω2S2

A

(
R4

A − 4S4
A

) (
ω2

0

(
R4

A + 4S4
A

)
+ 24ω2R4

A

)
+ (2r)664ω2

(
3ω2 + ω2

0

)
R2

AS2
A

(
R4

A − 4S4
A

)
+ (2r)84ω2

0S
2
A

((
8ω2 + ω2

0

) (
R4

A − 4S4
A

)
− 4ω2

0R
4
A

)
+ (2r)1032ω2

0

(
ω2 − ω2

0

)
R2

AS2
A−(2r)1216S2

A

(
4ω2ω2

b +
(
ω2 − ω2

0

)2
)]

= 0

(27)
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It is necessary to admit, that applicability of the Eqs (26) and (27) is rather limited. Moreover,
it brings no new qualitative results comparing to the simplified version (25). On the other hand,
the pair of equations (25) provides us a rather convenient way to examine behaviour of the
simplified equation in detail.

6. Conclusions

Analytical and numerical investigations have shown that the widely used linear model of the
damping pendulum is acceptable only in a very limited extent of parameters concerning pen-
dulum characteristics and excitation properties. In the case of a harmonic kinematic external
excitation at the suspension point, it is necessary to thoroughly investigate the dynamic stability
limits and post-critical behaviour. To investigate the stability of the semi-trivial solution, it is
necessary to use the approximate approximate equations in the Cartesian coordinates. Using
the harmonic balance method the resonance curves of a planar stationary response as well as
the stability limits of the semi-trivial solution in both response components have been deter-
mined. Omitting the simplification (9) results in very complicated formulas and brings only
quantitative specification. It reveals, however, that these results obtained using either (9) or (8)
are quantitatively acceptable in the non-resonance interval only.
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Fischer C., Náprstek J. #134

259


