
IS THE LOGARITHMIC TIME DERIVATIVE SIMPLY
THE ZAREMBA-JAUMANN DERIVATIVE?

Z. Fiala1

Summary: The paper raises a question whether the logarithmic time derivative,
expressed in specific coordinate system, is the Zaremba-Jaumann time derivative,
and if not why. In fact, it has been already proved that the Z-J derivative represents
the geometrically consistent linearization of tensor fields in terms of the covariant
derivative in the space of right Cauchy-Green deformation tensors C. This is the
space of symmetric, positive-definite 3×3 matrices of real numbers Sym+(3,R) ∼=
GL+(3,R)/SO(3,R), which has a natural geometry of a Riemannian (globally)
symmetric space of constant curvature, with the covariant derivative based on its
Riemannian metric. Since in this geometry matrix exponentials stand for geodesics
(that is a generalization of straight lines), the logarithmic strain log(C) can be
interpreted simply as the change of coordinates in Sym+(3,R), called the normal
coordinates. There are some indications that the Z-J time derivative expressed in
this normal coordinate system might be the logarithmic time derivative.

1. Introduction

According to Norris, the main development in the past 20 years in solid mechanics is the proof
of Xiao et al. (1997a) that the relation

˚
log(V) = d (1)

between every possible left stretch V (from the polar decomposition of the deformation gradient
F = VR) and the stretching d (the symmetric velocity gradient) holds true if and only if the
corotational and objective time derivative, marked by ’◦’, is the logarithmic one. Furthermore,
only log(V) enjoys this property. This opinion can be found at the webpage http://imechanica.
org/node/1646 together with a discussion about the derivative of logarithmic strain, which in
a way illustrates pretty well the state of understanding of the theory of finite deformations.

As a substantial ingredient, the logarithmic time derivative especially enters the two subjects:
the work-conjugacy in Eulerian setting and the rate-type constitutive relations via hypoelasti-
city. The concept of conjugate Lagrangian strain E and stress S with material time derivative
was introduced by Hill (1968): He defines the stress power per unite volume via

πref≡ J σ : d = S : Ė , (2)
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where J denotes the Jacobian, and σ the Cauchy stress. The relation (1) enables then to claim
that the Kirchhoff stress τ = Jσ and the Eulerian strain log(V) with the logarithmic time
derivative form the conjugate pair (Xiao et al., 1997c, 1998; Norris, 2008)).

Hypoelasticity, as a direct extension by Truesdell (1955a,b) of the Hooke’s law to finite de-
formations, establishes a linear relationship between the objective rate (increment) of the Kirch-
hoff stress and the rate (increment) of deformation via a forth-order stress-dependent moduli
tensor :

τ̊ = L(τ) : d (3)

Due to its straightforward Eulerian rate form, hypoelasticity enters as a basic constituent into
Eulerian rate-type formulations of inelastic material behaviours, in particular, metal plasticity.
Without demanding any further requirements, equation (3) seems to permit the use of any ob-
jective rate, where the objectivity insures that any superimposed rigid rotating motion has no
effect. This however proved not to be the case, and the choice of a particular objective stress
rate is the most important part of the hypoelasticity theory, and not only of this theory (Naghdi
et al., 1961; Guo, 1963; Durban et al., 1977; Matolcsi et al., 2007) to cite just a few.

Truesdell used the Lie derivative of the Kirchhoff stress, known as the Truesdell stress rate
of the Cauchy stress (Marsden et al., 1993). Slightly later, since in addition it meets the require-
ment of Prager (1960) that vanishing of the stress rate implies the stationary behaviour of the
stress invariants, the Zaremba-Jaumann stress rate was employed (see Biot (1965) for example)

τ̊ZJ = τ̇ − w τ + τ w , (4)

where w = 1
2
(∇ v− (∇ v)T) is the vorticity tensor. However, when the material is subjected

to finite simple shear deformation, Dienes discovered unexpected spurious phenomena known
as shear oscillations. Other stress rates were therefore suggested and shown to be possible
alternatives by means of the reasonable simple shear responses. These rates were either non-
corotational, based on Lie derivative, such as the Cotter-Rivlin and Oldroyd stress rates (even
though neither satisfies Prager’s criterion), or corotational, such as the Green-Naghdi stress rate,
stress rates based on the twirl tensor of Eulerian or Lagrangian triads as the spin, and finally
the logarithmic one (Liu et al., 1999; Meyers et al., 2000; Lin, 2003). The corotational (or ro-
tated) rates are defined in terms of the time-dependent spin tensor Ω, replacing w in (4), which
measure the rate of change of tensors, as seen by an observer in a rotating frame specified by
a rotating tensor Q, such that Ω = Q̇Q.

However reasonable response to a particular mode of deformation the stress rate offers, this
can not serve as a criterion to draw decisive conclusion about the right choice. In fact, Simo
and Pister in Simo et all. (1984) proved that, except for the logarithmic rate, none of such rate
equations is exactly integrable to really define an elastic relation. That is, they generate a path-
dependent stress-deformation via integration, and so they specity material behaviour, which is
incompatible with hyperelasticity (Green-elasticity) and even with elasticity in general, since
Cauchy-elasticity is in fact hyperelasticity (Casey, 2005). That is why many people try to avoid
rate form equations of elasticity (particularly Truesdell’s hypoelasticity) and favour approaches
such as hyperelasticity (which can be derived from a potential) with some kind of linearization,
in spite of some objections to this approach in elastoplasticity, highlighted in Xiao et al. (2007).

Still, among all possible objective corotational stress rates there is one and only one, namely
the logarithmic stress rate (Xiao et al., 1997a, 1998; Bruhns et al., 2002)

τ̊ log = τ̇ − Ωlog τ + τ Ωlog , (5)
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for which the hypoelastic equation with an initial natural (stress-free) state is exactly integrable
(Xiao et al., 1997b, 1999a,b, 2002).

In our paper, we show first that a deformation process can be described as a curve in the space
of symmetric, positive-definite 3×3 real matrices Sym+ and introduce here a Riemannian metric
via the stress power. Then, we shall describe the Riemannian geometry of Sym+ to apply it
further in the analysis of deformation of continua. Finally, we introduce and discuss normal
coordinates in Sym+, especially as far as the Zaremba-Jaumann time derivative is concerned.

2. Deformation process as a curve in the space of symmetric, positive-definite matrices

In this section we shall briefly summarize basic facts about deformation process (see Fiala
(2008) for more). Let a continuous body B occupy a region of the three-dimensional Euclidean
point space E3, considered here as the Riemannian manifold E3. That is, as a set of points with
no privileged coordinate system, endowed with a Riemannian metric, which enters the manifold
via an inner product of any two vectors emanating from the common point.

Globally, a deformation is represented by a diffeomorphism Φ : B → E3 (i.e. a one-to-one
map, which is differentiable together with its inverse) and a deformation process by a time-
dependent diffeomorphism Φ : I×B → E3. However, within continuum mechanics one adopts
a local point of view to describe a deformation process in terms of a time-dependent deformation
field, expressed by means of the deformation gradient F – a linearized diffeomorphism Φ, and
its transpose FT. We shall consider here the right Cauchy-Green deformation field C = FTF,
represented by a symmetric, positive-definite matrix, even though other deformation fields, such
as the left Cauchy-Green, the Piola, or the Almansi might be also possible.

We shall adopt the following convention: In general, 2-tensors will be labelled in italic, but
their specific representation as linear mappings in bold. Covariant 2-tensors will be denoted
by [, contravariant by ], and mixed will be without superscript. Furthermore, we shall denote
∂C[

t : = ∂
∂t

C[
t .

STARTING POINT: From the viewpoint of finite deformations, a deformation process can be
represented by a trajectory C[: I →M in the space M = Met(B) of all (covariant) deforma-
tion tensors on the reference configuration B, or equivalently by a trajectory C : I → Sym+, in
the set of all symmetric, positive-definite real matrices. If the initial configuration is unstrained
with an initial condition C[

0 = G, resp C0 = I, where I stands for the identity matrix.
Since both C[ and G belong to the same tensor space, we can subtract G from C[ to find
a relative deformation (strain) – the Green-St. Venant strain tensor 1

2
(C[ −G), resp 1

2
(C− I).

To every diffeomorphism Φ : B → S there is one-to-one mapping between corresponding
spaces of tensors – push-forward Φ∗ and its inverse – pull-back Φ∗. We can write Fiala (2008):
(1) C[ = Φ∗(g) (or C[ = Φ∗(g)), where g is Riemannian metric on actual configuration S, and

C[ = GC, where G is Riemannian metric on referential configuration B
(2) ∂C[

t = 2Φ∗
t (d

[), where d[ is covariant form of the symmetric velocity gradient d, that is
2d = ∇vt + (∇vt)

T = (vi
t|j + vt j|i) ∂xi ⊗ dxj , where ∇vt stands for covariant derivative;

D : = Φ∗(d) = Φ∗(g]d[)= Φ∗(g])Φ∗(d[) = B] 1
2
∂C[ = 1

2
C−1∂C, where ∂C = ∂(FTF)

(3) B] = Φ∗(g]) (or B] = BG−1) is the contravariant Piola deformation tensor, and B = C−1

The following proposition relates tangent vectors ∂C[ along curves Ct in M through C[ to
small deformations. Let us consider a tangent space TC[M to the manifold M at a point C[.
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By definition, it consists of all deformation rates ∂C[ starting at C[, i.e. of tangent vectors to
all curves C[

t through the point C[. Similarly, denote by TCSym+ the corresponding tangent
space of Sym+ at C.

PROPOSITION 1: Within small deformations, a deformation process superposed on the ini-
tially strained body, which is characterized by the initial deformation field C[, is represented by
a trajectory in the linear vector space TC[M – the tangent space to the manifoldM at point C[,
or equivalently by a trajectory in TCSym+≈ sym – the vector space of symmetric matrices.
For proof see Fiala (2008). The equivalent form then follows from the fact that Sym+ is open
in sym (see next section), and so the tangent space TCSym+∼= sym. That is, the vector space
of all tangent vectors emanating from a common footpoint C ∈ Sym+ is again sym.

PROPOSITION 2: One can naturally introduce Riemannian metric onM to become a manifold
with Riemannian geometry of Sym+ – the space of symmetric, positive-definite matrices.
Proof. Let us consider the power of internal forces (stress power)

δEi

δt
: =

∫
S
(σ : d) dv ≡

∫
S

σ i
j dj

i dv =

∫
S

gikgjlσkl dij dv = (6)

=

∫
B

Bik
t Bjl

t Kkl
1
2
∂Ct ij dV =

∫
B

ΩC[
t

(
1

ρB
K[, 1

2
∂C[

t

)
dm = ωC[

t

(
1

ρB
K[, 1

2
∂C[

t

)
,

where we employed relations ∂C[
t = 2Φ∗

t (d
[), JdV = Φ∗

t (dv), and dV = (det G)
1
2 dX for

volume element. The symbol σ as usual stands for the Cauchy stress field, and 1
ρB

K[ represents
the convective stress related to mass, instead of volume element. From the mathematical point
of view, the space M forms an infinite-dimensional manifold, but its geometry factorises into
identical geometries of individual spacesMX , made up of all metric tensors at the point X ∈ B,
with Riemannian metric

ΩC[
t
(D[, H[) = Bik

t Bjl
t DklHij = tr (B]

tD
[B]

tH
[) = tr (C−1

t DC−1
t H) (7)

for D[, H[ ∈ TC[
t (X)MX . In the next section we shall show that this is a natural Riemannian

metric on Sym+, making it Riemannian (globally) symmetric space (cf. (21)).
A Riemannian metric on the space MX can also be introduced via the inner product of

vectors ∂C[ to curves C[
t passing through the point C[∈MX . Since the inner product g(u, v) =

giju
ivj = uiv

i of two vectors from S naturally extends to the scalar product of symmetric
covariant 2-tensors via

(g] ⊗ g])(d[, h[) = gikgjl dkl hij = d i
j hj

i = d : h, (8)

its corresponding counterpart in reference configuration B is again (7), thanks to the relation
∂C[ = 2Φ∗

t (d
[). In order to extend this inner product to fields, i.e. to the whole M, it remains

yet to integrate all the contributions from particular points X through the space B. In principle,
we have two opportunities: integrate by volume or mass element, but unlike the introduction of
Riemannian metric via stress power, now the choice is not a priory obvious.

Considering Sym+ as the Riemannian manifold rather than a subset of the vector space of
all symmetric matrices enables us to analyse in a geometrically consistent way a deformation
process by means of geometrical tools of Riemannian geometry. Surprisingly, we thus arrive
at the Zaremba-Jaumann time derivative, logarithmic strain, and possibly at the logarithmic
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time derivative. Before analysing deformation process, we therefore introduce in detail some
geometrical facts about Sym+ in the next section. This approach to mechanics of continua was
initiated by Rougée (1997) (see also Rougée (2006)), and modified by Fiala (2004), where some
results based on integration by volume element can be found.

3. Riemannian geometry of the space of symmetric, positive-definite matrices Sym+(n)

The purpose of this section is to give a self-contained exposition of the natural intrinsic Rie-
mannian geometry of the space of symmetric, positive-definite matrices Sym+(n) (Bhatia, R.,
1997, 2007).

First, let us consider a nonsingular matrix F ∈ GL+(n) and its polar decomposition F =
RU, for which U ∈ Sym+(n), and R ∈ SO(n) – the group of orthogonal matrices with
determinant one, satisfying RT = R−1. We denote by GL+(n)/SO(n) the space of all left
cosets of GL+(n)

GL+(n)/SO(n) := {SO(n)F |F ∈ GL+(n)}, (9)

and by [F] the particular left coset corresponding to F. Note that [I] ≡ SO(n) for the iden-
tity matrix I. From uniqueness of polar decomposition it follows that each left coset contains
a unique symmetric, positive-definite matrix given by U = (FTF)

1
2 ∈ [F] ≡ [U], and so we

can identify the space Sym+(n) with the left coset space

Sym+(n) ∼= GL+(n)/SO(n) = R+× SL(n)/SO(n). (10)

This space further splits into two irreducible factors – the group of positive real numbers with
group operation of number multiplication R+ and the space of symmetric, positive-definite ma-
trices of determinant one.

Based on this identification, we can derive the geometrical properties of Sym+(n), which
is no longer a group, but belongs to the family of so-called Riemannian (globally) symmetric
spaces. These are Riemannian manifolds with (global) central symmetry through every point,
called involutive isometry (cf. (29)), which reverses all geodesics through this point. Geometry
of Riemannian symmetric spaces is then characterized by a high degree of symmetry, so that
they constitute a natural generalization of the Euclidean space. In fact, the space Sym+(n) is
homogeneous with respect to the group of translations GL(n), cf. (16) – i.e. its geometry in the
vicinity of any point is the same, and it is isotropic with respect to the group of rotation SO(n),
cf. (24) – i.e. its geometry is also the same in all directions. Thus the geometry of Sym+(n) is
the same at every point, as in the Euclidean space.

Before introducing the Riemannian metric, we shall specify these symmetries. We can in-
troduce the right action of GL(n) on GL+(n)/SO(n), based on the right group operations in
GL(n). For A ∈ GL(n) and [F] ∈ GL+(n)/SO(n) it is given by

rA([F]) := [FA], (11)

that is by
rA([(FTF)

1
2 ]) := [(AT(FTF)A)

1
2 ]. (12)

Because any symmetric, positive-definite matrix has exactly one square root, the mapping f :
GL(n)→ Sym+(n) given by f(F) = FTF is, when restricted to Sym+(n) ⊂ GL(n), one-
to-one. Then the transformations ρA≡ f ◦ rA◦ f−1 form a group isomorphic to the group of
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transformations rA, and the group of movements induced by GL(n) acts in Sym+(n) on the
right by the formula

ρA(U) := ATUA . (13)

For identity matrix I and any R ∈ SO(n)

ρR(I) = I , (14)

and so SO(n) specifies a subgroup of rotations around I from all the movements of GL(n).
Note that we can start with F = VR, then employ the right coset space and the left group
operation to obtain λA(V) := AVAT – the left action of GL(n) on GL+(n)/SO(n). Both
approaches are however equivalent.

Now, we introduce on Sym+(n) a Riemannian metric and prove, that described the sym-
metries are in fact isometries. First, the space M(n) can be identified with Rn2and as such,
both M(n) and Sym+(n) inherit a natural topological and differentiable structure. Moreover,
the usual scalar product ( . , .) induces in M(n) the corresponding inner product (Frobenius
product) given by

〈A,B〉I ≡ (vec [A], vec [B]) = tr (ATB) , (15)

where tr (.) denotes the trace operator, and by vec [A] we denote the n2-column vector, which
is obtained by stacking the columns of A in one row. This way the subspace sym(n) becomes
an inner product vector space. Since Sym+(n) is open in sym(n), actually an open convex
cone (for n = 2, see picture in Moakher (2005)), the tangent space TCSym+∼= sym(n). That is,
the vector space of all tangent vectors emanating from the common footpoint C ∈ Sym+(n) is
again sym(n).

To any translation by A ∈ GL+(n) given by

ρA(U) : = ATUA , (16)

there corresponds mutually inverse mappings of vectors – the push-forward operation [ ρA]∗
and the pull-back operation [ ρA]∗ between corresponding tangent spaces

[ ρA]∗ : TU Sym+→ TρA(U )Sym+ (17)
[ ρA]∗ : TρA(U )Sym+→ TU Sym+, (18)

which satisfy

[ ρA]∗(H) = ATHA (19)
[ ρA]∗(G) = A−TGA−1. (20)

This can be readily derived from transformation of a curve l(t) in Sym+(n) through the point
l(0) = U, with a tangent vector ∂l(0) = H.

Now, the Riemannian metric at C ≡ U2∈ Sym+(n) (since U2 = ρU(I)) given by

ΩC(D,H) : = 〈[ ρU]∗(D), [ ρU]∗(H)〉I = tr (C−1DC−1H) , (21)

is expressed in terms of inner product of any two vectors D,H ∈ TCSym+∼= sym(n) emana-
ting from the common footpoint C ∈ Sym+(n) (cf. (7)). This metric is natural, because is
obtained by pushing forward the usual trace norm for matrices at I to the whole Sym+(n)

ΩρU(I) = [ ρU]∗ ( ΩI), (22)
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and hence is necessarily invariant with respect to the group of movements GL+(n) acting on
Sym+(n)

ΩC(D,H) = ΩρA(C)([ ρA]∗(D), [ ρA]∗(H)) . (23)

For the rotation θR with amplitude R ∈ SO(n) around I we have θR ≡ ρR, and around
a general point P = U2 we obtain, via composition with translations

θP
R = ρU ◦ θR ◦ ρU−1 = ρU−1RU. (24)

The assertion about homogenity and isotropy of Sym+(n) is thus proved.
Moreover, the metric is also invariant with respect to the central symmetry σI through I

ΩC(D,H) = ΩσI(C )([ σI]∗(D), [ σI]∗(H)) (25)

defined by
σI(C ) : = C−1, (26)

where

[ σI]∗(H) = −C−1HC−1 (27)
[ σI]

∗(G) = −CGC . (28)

This can be proved again from transformation of a curve l(t) in Sym+(n) through the point
l(0) = C, with a tangent vector ∂l(0) = H, making use of the identity l(t) σI(l(t)) = I. The
central symmetry with respect to an arbitrary point P = U2, leaving it invariant, is obtained via
composition with translations:

σP(Q) = ρU ◦ σI ◦ ρU−1(Q) = PQ−1P . (29)

This high degree of symmetry is closely related to the fact that Sym+(n) has constant negative
curvature: For more about Sym+(n) from the viewpoint of symmetric spaces see Jost (2002)
chap. 5.4, and from the viewpoint of spaces of non-positive curvature see Bridson et al. (1999),
chap II.10.

To specify the Riemannian covariant derivative (Ohara et al., 1996) note that

2ΩC(∇GH,D) = δGΩC(H,D) + δHΩC(D,G)− δDΩC(G,H) +

+ ΩC([G,H],D) + ΩC([D,G],H)− ΩC([H,D],G) . (30)

Because for matrices [H,G] := HG−GH, and due to tr(AB) = tr(ATBT)

ΩC([G,H],D) = ΩC([D,G],H) = ΩC([H,D],G) = 0 (31)

Next, since

δGΩC(H,D) = − ∂

∂t
Ω(C+tG)(H,D)

∣∣∣∣
t=0

= −2tr (C−1GC−1HC−1D), (32)

and due to tr(AB) = tr(BA) and due to

δGΩC(H,D) = δHΩC(D,G) = δDΩC(G,H) (33)

Fiala Z. #211

233



one obtains
ΩC(∇GH,D) = −tr (C−1GC−1HC−1D) . (34)

Also note that

ΩC(H,D) = −δHδDS(C) = − ∂2

∂s ∂t
S(C+ tH + sD)

∣∣∣∣
t=s=0

(35)

where δG is directional derivative, and S(C) := log(detC) = tr(log C).
Let Eα , α=1, . . . , 1

2
n(n + 1) denote a coordinate frame, then since Riamannian connections

are symmetric or torsion-free, i.e. Γ(Eα,Eβ) := ∇EαEβ = ∇Eβ
Eα, for the Christoffel symbols

from (34) one gets

ΓC(Eα,Eβ) = −1

2

(
EαC

−1Eβ + EβC
−1Eα

)
. (36)

For general vector fields G, K then

∇GK := δGK + ΓC(G,K) , (37)

where δGK denotes derivation of the field K in the G direction, performed in the ambient space
sym.

Since the corresponding covector P : = ΩCK = C−1KC−1 (cf. (21)), and because the
Riemannian metric ΩC is covariant constant, i.e.

∇G

(
C−1KC−1

)
= C−1 (∇GK)C−1 , (38)

for covariant derivative of the covector field we deduce from (37)

∇GP := δGP + Γ∗C(G,P) , (39)

where now
Γ∗C(G,P) =

1

2

(
PGC−1+ C−1GP

)
. (40)

The Riemannian metric determines via the covariant derivative the equation for geodesics.
As locally the shortest curves between two points, they represent in Riemannian geometry
a generalization of straight lines. A curve C(t) is the geodesic, if for its tangent vectors ∂C(t)

∇∂C ∂C = ∂2C− (∂C)C−1∂C = C ∂(C−1∂C) = 0 . (41)

The equation reduces to
∂C = CD , (42)

where D is any constant matrix in sym(n). The solution for initial conditions C(0) ≡ C0 =
= U2∈ Sym+(n) and ∂C(0) ≡ ∂C0 = UDU ∈ sym(n) is then given by

C(t) = U exp(tD)U = C0 exp
(
tC−1

0 ∂C0

)
, (43)

where the last equality holds true because the matrix exponential is an analytic function. Note
that this geodesic can be obtained by means of translation by U

C(t) = ρU(exp (tD)) (44)

from the geodesic exp (tD) through I, with the initial vector D. Moreover, any two points in
Sym+(n) (i.e. symmetric positive-definite matrices) can be joined by exactly one geodesic,
there is exactly one geodesic for any initial vector from sym, and these geodesics can be further
extended without limits (Hopf - Rinow theorem about geodesic completeness).
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4. Continuum mechanics via Riemannian geometry of Sym+

From the viewpoint of Sym+, the deformation process is a curve, and so the deformation at
a particular time, represented by the deformation tensor Ct, is a point. The rate of deformation
∂Ct at Ct is a vector attached to this particular point Ct, as well as the convective stress tensor
K, corresponding to K[ = Φ∗

t (Jσ[). On the other hand (cf. (6)), due to the first term in the third
row of

δEi

δt
: =

∫
B

ΩC[
t

(
1

ρB
K[, 1

2
∂C[

t

)
dm = ωC[

t

(
1

ρB
K[, 1

2
∂C[

t

)
: =

∫
S

σijdij dv =

∫
B

P ij 1
2
∂Ct ij dV =

=

∫
B
〈 1

ρB
P ], 1

2
∂C[

t 〉TC[
t (X)

M dm =
〈〈

1
ρB

P ], 1
2
∂C[

t

〉〉
T

C[
t
M

, (45)

the second Piola-Kirchhoff stress tensor P : = ΩCtK = C−1
t KC−1

t , corresponding to P ] =
Φ∗

t (Jσ]), is a covector (i.e. covariant vector), also attached to this particular point Ct. In fact,
(see (7))

〈P ], ∂C[
t 〉TC[

t (X)
M = tr (C−1

t KC−1
t ∂Ct) = tr (P∂Ct) ≡ 〈P, ∂Ct〉TCtSym+ . (46)

PROPOSITION 3: The Kirchhoff stress rate is given by the Zaremba-Jaumann time derivative.
Due to the above, in order to obtain a geometrically consistent stress rate, we have to linearize in
Sym+ the vector/covector field over the curve representing a deformation process. Since Sym+

in curved, we have to resort to the covariant derivative, based on the metric Ω, with respect to
the deformation rate ∂C[

t . This automatically guarantees an objectivity of the time derivative
introduced. Rather surprisingly, what we obtain proves to be the Zaremba-Jaumann stress rate
(Fiala, 2008).

In fact, for a time-dependent covector or vector field Θ ∈ Sym+ we set (cf. Fiala (2008))

D

dt
Θ : =

∂Θ

∂t
+∇∂C Θ , (47)

and so from (37) for a time-dependent vector field K along a trajectory Ct in Sym+, we get

D

dt
K : =

∂

∂t
K +∇∂CtK =

d

dt
K− 1

2

{
(∂Ct)C

−1
t K + KC−1

t (∂Ct)
}

, (48)

For a covector field P : = ΩCK = C−1KC−1, analogically from (39) we obtain

D

dt
P : =

∂

∂t
P +∇∂CtP =

d

dt
P +

1

2

{
P (∂Ct)C

−1
t + C−1

t (∂Ct)P
}

. (49)

For their corresponding mixed 2-tensor on E3 – the Kirchhoff stress τττ = F−T KF−1 = FPFT,
the stress rate will be given by

D

dt
τττ : = F−T

(
D

dt
K

)
F−1 = F

(
D

dt
P

)
FT, (50)

which results in the Zaremba-Jaumann time derivative (Fiala, 2008)

D

dt
τττ = τ̇ττ −wτwτwτ + τwτwτw ≡ τ̊ττZJ. (51)
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Unlike Fiala (2008), where we used the pull-back operation Φ∗, the relations (50) look a bit
cumbersome. But this is due to our starting from mixed 2-tensors, which combine metric tensors
from both reference G and actual g configurations, and so mixed tensors are less natural than the
covariant and contravariant 2-tensors. In fact, we may write τττ = g−1Φ∗(GK) = Φ∗(PG−1)g,
and correspondingly for (50).

Note an important fact, that the proof of proposition establishes the stress rate of the se-
cond Piola-Kirchhoff P and of the convected K stress mixed tensors to find out that it is not
the simple time derivative ∂

∂t
, nor the material time derivative d

dt
, but it is the derivative based

on covariant derivative D
dt

, which in actual configuration corresponds to the Zaremba-Jaumann
time derivative of the Kirchhoff stress. Even though this might seem contentious in view of the
problems mentioned in connection with its use in hypoelasticity, the following considerations
based on the Hopf – Rinow theorem about geodesic completeness of Sym+ might support this
time derivative.

THEOREM (Hopf - Rinow) (see Bridson et al. (1999); Jost (2002)): Sym+(n) is geodesically
complete. That is, for every C0 ∈ Sym+(n), the exponential map

ExpC0
(.) : =C0 exp(C−1

0 (.)) (52)

maps the entire tangent space TC0Sym+(n) ≈ sym(n) onto Sym+(n) bijectively (i.e. one-to-
one) and differentiably.
Among others, the theorem says that any two symmetric, positive matrices can be connected by
exactly one, unlimited geodesic (straight line).

In our context, the generalized exponential map (52) (cf. (43)) of the theorem adds up an
increment of deformation H ≡ ∂C0 ∈ TC0Sym+ to the deformation C0 ∈ Sym+, so that the
resulting deformation C1(H) = ExpC0

(H) stays in the space of deformations Sym+. This will
not be the case if we set just C1(H) = C0 + H.

PROPOSITION 4: Resulting deformation C1(H) from adding an increment of deformation H
to the deformation C0 is given by

H 7−→ C1(H) ≡ ExpC0
(H) : = C0 exp(C−1

0 H) (53)
= C0 + H + 1

2!
HC−1

0 H + 1
3!

HC−1
0 HC−1

0 H + . . .

Thanks to its properties, ExpC0
(.) has an inverse – the generalized logarithmic map LogC0

(.),
in our context with the meaning of a generalized logarithmic strain:

PROPOSITION 5: The generalized logarithmic strain H(C) is a result of mapping of a defor-
mation C with respect to the deformation C0 by

C 7−→ H(C) ≡ LogC0
(C) : = C0 log (C−1

0 C) , (54)

so that one gets a vector from TC0Sym+, which specifies a geodesic line connecting two states
of deformation C0 and C.
Given the fact that D : = Φ∗(d) = 1

2
C−1∂C (see point 3 after STARTING POINT), then

2Dt = t log (C−1
0 C) along the geodesic between C0 and C, where t ∈ 〈0, 1〉, and whose initial

vector ∂C0 = H(C) = 2C0D (cf. (42)).

COROLLARY: The logarithmic strain tensor log(C) is a vector that determines a geodesic line
connecting the undeformed state I with the deformed one with C.
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Bruhns et al. (2002) discusses the exact integrability of the hypoelasticity equation to con-
clude that, in addition to employing logarithmic strain and logarithmic derivative, this is only
possible when a natural stress-free initial configuration is prescribed at the same time. Propo-
sitions 5 and 1 suggest why this should happen and how to possibly modify the logarithmic
strain. This form of remedy stems from the geometry of Sym+, which is the same both at I and
C. Hence the only difference is the footpoint, but not the approach itself. Still, one question
remains. Namely, what the logarithmic rate in this case should look like.

5. Logarithmic time derivative and normal coordinates

Thanks to the Hopf - Rinow theorem, we can introduce in Sym+ a global system of coordinates
based on geodesics, which are called normal (Riemannian) coordinates. Using the generalized
exponential map, and choosing an arbitrary basis for the vector space sym, one defines the
normal coordinates of a point C to be the components of the vector H ∈ TC0Sym+ ≈ sym,
for which ExpC0

(H) = C. In other words, if we denote by xα(H) = hα coordinates of
H = hαEα ∈ sym, where the set {Eα|α = 1, . . . , 1

2
n(n + 1)} forms in sym a basis, then

components of vector H(C) ≡ LogC0
(C) = C0 log (C−1

0 C) constitute normal coordinates
Clog of point C, so that normal coordinates of point C0 are all zero’s.

Now, the geodesics through point C0 in normal coordinate system are all of the form Clog
t =

t∂C0, and so it can be proved that the Christoffel symbols Γ log
C0

(Eα,Eβ) at this point are all
zero’s. As a result, the covariant derivative ∇log

∂C0
at C0, expressed in normal coordinate system,

equals to the partial derivative (see Kobayashi et al. (1963) for example), i.e.

∇log
∂C0

(.)
∣∣∣
t=0

= ∂(.)|t=0 . (55)

Moreover due to (66) with (63) and (61), at the start of the deformation process also

∂Clog
t

∣∣∣
t=0

= (LogC0
(C0))∗(∂C0) = ∂C0 (56)

and then
D

dt
Clog

t

∣∣∣∣
t=0

= ∇log
∂C0

(Clog
t )

∣∣∣
t=0

= ∂C0, (57)

where we have omitted the first term with partial time derivative, since points in Sym+ are
stationary. Due to (54), after multiplying (57) by 1

2
C−1

0 on the left

1

2

D

dt
log(C−1

0 Ct)

∣∣∣∣
t=0

=
1

2
C−1

0 ∂C0 = D0. (58)

Considering that d = FDF−1 and that FCF−1 = b = V2, where b is the left Cauchy-Green
deformation tensor (Fiala, 2008), and so also F log(C−1

0 Ct)F
−1 = log(b−1

0 bt), we obtain (cf.
transformation (50) and (51))

1

2

D

dt
log(b−1

0 bt)

∣∣∣∣
t=0

≡ 1

2

[
log(b−1

0 bt)
] ◦ZJ

log

∣∣∣∣
t=0

= d0, (59)

and for undeformed initial state, i.e. b0 = I and log(b−1
0 bt) = 2Vt, we obtain[

Vlog
t

]◦ZJ

log

∣∣∣∣
t=0

≡ [ log(Vt)]
◦ZJ
log

∣∣∣
t=0

= d0. (60)
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CONCLUSION: We can thus conclude that in normal coordinates the Zaremba-Jaumann time
derivative of the right stretch Vt at the onset of deformation, when starting from the undeformed
initial state, is equal to the stretching d, as is the case when using the logarithmic time derivative
in (1). A question still remains, whether this holds true at all times, and if not why.

Finally, a change of coordinates of C from standard one to that of Clog via the transformation
Clog = LogC0

(C) induces a corresponding transformation of coordinates of vectors

Dlog =
δLogC0

(C)

δC
D : = δDLogC0

(C) ≡ [LogC0
(C)]∗(D), (61)

where δ log(C)
δC

is an analogue of the deformation gradient F for Φ : B → S . In the same way we
thus obtain the push-forward [LogC0

(C)]∗ and the pull-back [LogC0
(C)]∗ operations, where

[LogC0
(C)]∗ = [LogC0

(C)]−1
∗ = [ExpC0

(H)]∗ . (62)

Since
δDLogC0

(C) = C0δC−1
0 D log(C−1

0 C), (63)

it suffices to derive the formula (61) just for C0 = I.
Let now C = RΛRT =

∑
λiPi be the spectral decomposition of C, where Λ is the corres-

ponding diagonal matrix with diagonal entries λi and Pi corresponding projectors, then (Bha-
tia, R., 1997, 2007)

[log(C)]∗(D) : = δDlog(C) = R
[
log[1](Λ) ◦ (RTDR)

]
RT (64)

=
∑

i

∑
j

log[1](λi, λj)PiDPj (65)

with [log(I)]∗ = Id , (66)

where the Hadamard (or Schur) product of two matrices A and B is defined to be the matrix
A ◦B whose (i, j)-entry is A j

iB
j
i , and the 3×3 symmetric matrix log[1](Λ) has numbers

log[1](λi, λj) =
log(λi)− log(λj)

λi − λj

if i 6= j

log[1](λi, λi) = log
′
(λi) =

1

λi

(67)

as its (i, j)-entries. The matrix log[1](Λ) is called Loewner matrix, and it was introduced by the
mathematician of Czech origin, Karl Loewner (1893–1968), who emigrated to America in 1939,
as early as 1934. The relation (64-65), known as the Daleckii-Krein formula, was presented by
Daleckii et al. (1951) and later rediscovered in mechanical literature starting from mid-eighties.
For a comprehensive survey of this literature, see (Xiao et al., 1998; Norris, 2008).

6. Conclusion

In addition to the conclusion of the previous section, I would like to point out the fact that the
geometrical approach to deformation via geometry of Sym+ looks remarkably compact and
self-consistent. It provides a natural way to the linearization of deformation process and to
the incremental approach within finite deformations, though with some unusual conclusions -
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see Proposition 4 about adding up a deformation increment, and (49) and (48) about the second
Piola-Kirchhoff and the convective stress rates. Due to the high degree of symmetry in the space
Sym+ we need not distinguish between initially unstrained and initially strained states, and this
might turn out essential for extending hypoelasticity to strained initial configurations. Moreover,
the generalized logarithmic map puts in one-to-one correspondence small deformations with
the finite ones (see Proposition 1 and 5), which might provide geometrical support for the nice
achievements of the hypoelasticity based on logarithmic strain and logarithmic time derivative.
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The support of grant GA ČR 103/09/2101, as well as the project AV 0Z 2071913 is gratefully
acknowledged.

8. References

Bhatia, R. 1997: Matrix analysis, Springer-Verlag.

Bhatia, R. 2007: Positive definite matrices, Princeton University Press, Princeton.

Biot, M. A. 1965: Mechanics of incremental deformations, J. Wiley, New York.

Bridson, M. R. & Haefliger, A. 1999: Metric spaces of non-positive curvature, Springer-Verlag.

Bruhns, O. T. Xiao, H. & Meyers, A. 2002: New results for the spin of the Eulerian triad and
the logarithmic spin and rate. Acta Mechanica, vol. 155, 95-109

Casey, J. 2005: A remark on Cauchy-elasticity. Non-lin. Mech., vol. 40, 331-339

Daleckii, Ju. L & Krein, S. G. 1951: Formulas of differentiation according to a parmeter of
functions of Hermitian operators. Dokl. Acad. Nauk SSSR, vol. 76, 13-16

Durban, D. & Baruch, M. 1977: Natural stress rate. Q. Appl. Math., vol. 35, 55-61

Guo, Z-H. 1963: Time derivatives of tensor fields in non-linear continuum mechanics. Archivum
Mechaniki Stosowanej, vol. 15, 131-161

Fiala, Z. 2004: Time derivative obtained by applying Riemannian manifold of Riemannian
metrics to kinematics of continua. C. R. Mecanique, vol. 332, 97-105

Fiala, Z. 2008: Geometry of finite deformations, linearization, and incremental deformations
under initial stress/strain. Engineering Mechanics 2008, eds: V. Fuis et al., Svratka, 20pp

Hill, R. 1961: On constitutive inequalities for simple materials - I. J. Mech. Phys. Solids, vol. 16,
229-242

Jost, J. 2002: Riemannian geometry and geometric analysis, Springer-Verlag.

Kobayashi, S. & Nomizu, K. 1963: Foundation of differential geometry, vol. 1, Wiley, New
York.

Lin, R. 2003: Hypoelasticity-based analytical stress solutions in the simple shearing process.
Z. Angew. Math. Mech., vol. 83, 163-171

Liu, Ch-S. & Hong, H-K. 1999: Non-oscillation criteria for hypoelastic models under simple
shear deformation. J. Elast., vol. 57, 201-241

Marsden, J. E. & Hughes, T. J. R. 1993: Mathematical foundations of elasticity, Dover Publica-
tions.

Fiala Z. #211

239



Matolcsi, T. & Ván, P. 2007: Absolute time derivatives. J. Math. Phys., vol. 48, 053507-19

Meyers, A. Schiesse, P. & Bruhns, O, T. 2000: Some comments on objective rates of symmetric
Eulerian tensors with application to Eulerian strain rates. Acta Mechanica, vol. 139, 91-103

Moakher, M. 2005: A differential geometric approach to the geometric mean of symmetric
positive definite matrices. SIAM J. Matrix Anal. Appl., vol. 26, 735-747

Naghdi, P. M., & Wainwright, W. L. 1961: On the time derivative of tensors in mechanics of
continua. Quart. Appl. Math., vol. 19, 95-109

Norris, A. N. 2008: Eulerian conjugate stress and strain. J. Mech. Materials Struct., vol. 3, 243-
260

Ohara, A. Suda, N. & Amari, S. 1996: Dualistic differential geometry of possitive definite
matrices and its applications to related problems. Lin. Alg. and Its Appl., vol. 247, 31-53

Prager, W. 1960: An elementary discussion of definitions of stress rate. Q. Appl. Math., vol. 18,
403-407
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