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NUMERICAL EXPERIMENTS IN A GLOBAL ENERGETIC MODEL
OF DAMAGE

J. Zeman∗, T. Roubı́ček∗∗, A. Mielke∗ ∗ ∗

Summary: This paper presents a Finite Element-based approach to constructing an
approximate energetic solution to a non-local damage model proposed by Mielke
and Roubı́ček (2006). Particular emphasis is given to obtaining a solution based
on global rather that local energy minimization. Performance of the model and the
numerical scheme is demonstrated on a basic two-dimensional example.

1 Introduction
Damage presents an inelastic load-induced response of solid bodies, which is typical of quasib-
rittle materials. Physically speaking, it is usually interpreted as a collective effect of microstruc-
tural failures, leading finally to the macroscopic collapse of the structure. Due to obvious rea-
sons, the damage theories have received a great attention in the engineering literature and huge
amount of theoretical, numerical and experimental work has been invested into understanding
and prediction of damage processes, see e.g. (Jirásek and Bažant, 2002, Chapter 26) for a sys-
tematic discussion.

In this contribution, we present an overview of theoretical and numerical results related to
a specific global (i.e. non-local) rate-independent isotropic damage model proposed by Mielke
and Roubı́ček (2006), which is inspired by an engineering damage model due to Frémond and
Nedjar (1996). Unlike its engineering counterpart, however, the former approach is supported
by a number of rigorous mathematical results (Mielke and Roubı́ček, 2006; Bouchitté et al.,
2007; Mielke et al., 2007) as well as a simple bifurcation study (Jirásek and Zeman, 2008).

The rest of the paper is organized as follows. Section 2 briefly overviews the essential com-
ponents of the adopted modeling framework and its application to the damage modeling. In
addition, an abstract approximation result is presented to prepare the footing for the subse-
quent numerical treatment. Section 3 presents the fully discrete version of the problem together
with its efficient numerical solution. In addition, a simple backtracking-in-time procedure is
proposed to obtain results consistent with the requirements of the underlying theory. Finally,
Section 4 demonstrates the theoretical principles on a simple uniaxial tension experiment.
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2 Methods

2.1 Global energetic formulation
Let us consider a damaging body subject to displacement-controlled loading program. In the
sequel, the body will be represented by a set Ω ⊂ Rd with boundary Γ, subjected to the Dirichlet
loading ΓD. Symbol t denotes the (pseudo-) time taken from interval I = [0;T ].

Following the standard thermodynamic approach to constitutive modeling, cf. (Jirásek and
Bažant, 2002, Chapter 25), a state of the system is described using an admissible displacement
and internal variables û and ζ̂ , respectively. Formally, we write

û : Ω→ Rd, û ∈ K ζ̂ : Ω→ R, ζ̂ ∈ Z (1)

where where K denotes the set of kinematically admissible displacements and Z stands for the
set of admissible internal variables.

Within the adopted global energetic framework (Mielke, 2005), the constitutive description
of the damage model is provided by the stored energy functional

E(t, û, ζ̂) : I ×K× Z→ R (2)

and by the dissipation distance

D(ζ̂1, ζ̂2) : Z× Z→ R. (3)

Physically, E represents the energy reversibly stored in the system, whereas D is the energy
dissipated by changing the field of internal variables from ζ̂1 to ζ̂2. The last component of the
model is given by specifying the power of external loading

P(t, û, ζ̂) : K× Z→ R. (4)

Now, given the loading term P , energetic functionals E and D and initial data u(0) and
ζ(0), the energetic solution of the rate-independent evolution is provided by functions u(t) and
ζ(t) satisfying (Mielke, 2005):

Global stability: for all t ∈ (0;T ], û ∈ K and ζ̂ ∈ Z

E (t,u(t), ζ(t)) ≤ E(t, û, ζ̂) +D(ζ(t), ζ̂) (5)

Energy balance: for all t ∈ (0;T ]

E(t,u(t), ζ(t)) + VarD(ζ(t), [0, t]) = E(0,u(0), ζ(0)) +

∫ t

0

P(s,u(s), ζ(s)) ds, (6)

where VarD quantifies totally dissipated energy by the process ζ during time interval [0, t].

2.2 Application to damage
The previously introduced framework can be readily applied to the problem of damage,
cf. (Mielke and Roubı́ček, 2006; Bouchitté et al., 2007). In particular, in order to accommo-
date the time-dependent Dirichlet loading, corresponding to a displacement-controlled experi-
ment, we consider (with a slight abuse on notation) a split of the displacement field in the from



uD(t) + û, where uD is an appropriate extension of the prescribed Dirichlet boundary data and
the set of kinematically admissible displacements is defined as

K =
{
û ∈ W 1,2(Ω; Rd), û|ΓD

= 0
}
, (7)

where W 1,2 is the Sobolev space of functions with square-integrable weak derivatives, see
e.g. (Roubı́ček, 2005). Moreover, the interval variable ζ̂ has now the physical meaning of the
integrity field,1 constrained to an admissible set

Z =
{
ζ̂ ∈ W 1,2(Ω; R), 0 ≤ ζ̂(x) ≤ 1 a.e. in Ω

}
. (8)

The stored energy is assumed in the form

E ε(t, û, ζ̂) =

∫
Ω

ε+ ζ̂

2
ε(û+ uD(t)) : C : ε(û+ uD(t)) +

1

2
κ
∣∣∣∇ζ̂∣∣∣2 dΩ, (9)

where ε(û) is the linearized strain corresponding to a displacement field û, C is a fourth-
order tensor of elastic stiffness, κ is an influence factor introducing an internal length into the
formulation and ε is a regularization parameter, related to the residual stiffness corresponding
to “complete damage” (ζ̂ = 0). The dissipation distance is expressed as

D(ζ̂1, ζ̂2) =


∫

Ω

a(x)
(
ζ̂1(x)− ζ̂2(x)

)
dx if ζ̂1 ≥ ζ̂2 a.e.

+∞ otherwise
(10)

with a denoting an activation threshold (related to strength of a material) and the term “+∞”
ensures the irreversibility of the damage evolution; i.e. at any point, the integrity variable cannot
increase in time. Finally, the power of external forces is given by

Pε(t, û, ζ̂) =

∫
Ω

ε

(
∂uD(t)

∂t

)
: σε(t, û, ζ̂) dx (11)

where the ε-regularized stress σε provided by

σε(t, û, ζ̂) = (ζ̂ + ε)C : ε(û+ uD(t)) (12)

2.3 Time-incremental formulation
Although the previously mentioned conditions (5) and (6) present the formal definition of the
energetic solution, the analysis itself will be performed using the time discretization technique,
see e.g. (Rektorys, 1982) for a nice exposition. To that end, we introduce a uniform partitioning
of the time interval 0 = t0 < t1 = t0 + τ < . . . < tN = T and inductively solve the
minimization problem

(uk, tk) ∈ Arg min
( bu,bζ)∈K×Z

[
E(tk, û, ζ̂) +D(ζ(tk−1), ζ̂)

]
for k = 1, 2, . . . , N (13)

Note that the previous problem is independent from τ , which is consistent with the assumed
rate-independent character of the damage process. The theoretical results gathered in (Mielke

1Note that in engineering models of damage, the damage variable ω = 1− ζ is usually employed.



and Roubı́ček, 2006; Bouchitté et al., 2007; Mielke et al., 2007) show that, under reasonable data
qualification, the solution of the time-discretized problem converges to the energetic solution
as τ → 0. Moreover, at each time step, the energetic solution verifies the two-sided energy
inequality:∫ tk

tk−1

Pε(s,uk, ζk) ds ≤ E ε(tk,uk, ζk)− E ε(tk−1,uk−1, ζk−1) +D(ζk−1, ζk)

≤
∫ tk

tk−1

Pε(s,uk−1, ζk−1) ds (14)

2.4 Abstract approximation result
The last step of the theoretical setup is conversion of the previous semi-discretized problem into
a fully discrete one. To that end, consider finite-dimensional subspaces

Kh ⊂ K and Zh ⊂ Z.

Executing the incremental minimization, recall Eq. (13), with K and Z replaced with the discrete
counterparts yields the approximate energetic solution (uετh, ζ

ε
τh).

As shown by Mielke and Roubı́ček (2006), the convergence of the approximate solution to
the time-continuous one, i.e. as τ → 0 and h→ 0, requires2

Energetic density of Kh × Zh: For all t ∈ I and (û, ζ̂) ∈ K × Z with E ε(t, û, ζ̂) < ∞, there
exists {(ûh, ζ̂h)}h>0 such that (ûh, ζ̂h) ⇀ (û, ζ̂) and E ε(t, ûh, ζ̂h)→ E ε(t, û, ζ̂).

In the current setting, this condition is met for a piecewise-linear discretization of the involved
fields on simplicial meshes (Mielke and Roubı́ček, 2006), which opens the route to the imple-
mentation of numerical algorithm.

3 Numerics

3.1 Finite element discretization
Following the standard Finite Element procedures, e.g. (Bittnar and Šejnoha, 1996), the dis-
cretized version of the kinematics and integrity fields are provided with

uεkh(x) = Nu
h(x)dukh, ζεkh(x) = N ζ

h(x)dζkh, (15)

whereNu
h andN ζ

h(x) denote the matrix of basis functions, while dukh and dζkh are the associated
nodal values related to the time level tk. The discrete incremental minimization problem can
now be recast in the form

minimize
1

2

(
dukh + duD,h(tk)

)T
Ku

h (ζkh)
(
dukh + duD,h

)
+

1

2
dζkh

T
Kζ

hd
ζ
kh + fT

khd
ζ
kh

subject to 0 ≤ dζ ≤ dζk−1h, dukh,D = 0


(16)

2Note that the symbol ”⇀” stands for the weak convergence, cf. (Rektorys, 1982; Roubı́ček, 2005).



with the individual matrices provided by (k is omitted for the sake of brevity)

Ku
h

(
dζh

)
=

∫
Ωh

BuT
h (x)

((
ε+N ζ

h(x)dζh

)
C(x)

)
Bu
h(x) dx, (17)

Kζ
h =

∫
Ωh

BζT
h κ(x)Bζ

h(x) dx, (18)

f ζh = −
∫

Ωh

a(x)N ζT
h (x) dx. (19)

Hence, in the discretized form, solution of Eq. (16) leads to a large-scale, sparse, non-convex
and bound-constrained optimization problem.

3.2 Alternate minimization algorithm
As efficient way to the treatment of the previously introduced optimization problem is to exploit
its sparsity and simple form of the constraints. Such an approach is offered by the alternate
minimization algorithm recently proposed in (Bourdin, 2007; Bourdin et al., 2008), which is
similar to the operator split procedures of computational mechanics, cf. (Ortiz and Simo, 1986).
The basic principle of the algorithm is illustrated in Table 1:

1: Set j = 0
2: repeat
3: Set j = j + 1

4: Solve du(j) = arg min
1

2

(
du + duD,h

)T
Ku

h(d
ζ (j−1)

)
(
du + duD,h

)
5: Solve dζ

(j)
= arg min

0≤dζ≤dζk−1h

1

2
du(j)TKu

h(d
ζ (j−1)

)du(j) +
1

2
dζ

T
Kζ

hd
ζ + f ζh

T
dζ

6: until ‖dζ (j) − dζ (j−1)‖∞ ≤ δ

7: Set dukh = du(j), dζkh = dζ
(j)

Table 1: Conceptual implementation of Alternate minimization algorithm

Convergence properties of the algorithm were studied in (Bourdin, 2007), where the con-
vergence of the algorithm to a critical point of the objective function was demonstrated.

3.3 Backtracking procedure
Of course, there is no guarantee that the critical point is a global minimizer of the non-convex
objective function, which is a crucial assumption of the theoretical framework. In the current
work, the “globalization” of the alternate minimization procedure is performed using the two-
sided energetic estimate Eq. (14), checked with a tolerance η to account for the discretization
errors.

In particular, if the result of the alternate minimization algorithm fails to verify the inequal-
ity Eq. (14), the algorithm is restarted from the previous time level with dζkh used as an initial
guess for the minimization algorithm instead of dζk−1h. This procedure is repeated until an ad-
missible solution is found, see Table 2 for additional details.



1 : Set k = 1, dζ−1h = 0,dζ0h = 0, dζ
(0)

= 0
2 : repeat
3 : Determine dζkh using the alternate minimization algorithm

for time tk and initial value dζ
(0)

.
4 : Set dζ

(0)
= dζkh

5 : if two-sided inequality is satisfied with tolerance η
6 : Set k = k + 1
7 : else
8 : Set k = k − 1
9 : end
10 : until k ≤ N

Table 2: Conceptual implementation of backtracking algorithm

4 Illustrative example
Performance of the proposed algorithm will be illustrated on a “standard” benchmark problem:
a uniaxial tension specimen with an initial imperfection, see Figure 1.

4 m

1 m

0.2 m

0.2 mu(t) u(t)
x

y
Inhomogeneity
Threshold a/2

Figure 1: Experiment setup

The corresponding geometric and material data together with the algorithm parameters are
gathered in Figure 1 and Table 3, respectively. The structure is assumed to be in the plane stress
state and are subject to a proportional-in-time hard-device loading. The spatial discretization
was performed using the unstructured mesh generator T3D (Rypl, 1998) and the problem size
was reduced using symmetries of the specimens. The bound-constrained optimization prob-
lem was solved using a reflective Newton method (Coleman and Li, 1996), implemented in
MATLAB R©. The analyzed time interval [0, 1] was decomposed into 100 identical time steps.

Young’s modulus, E 27 GPa
Possion’s ratio, ν 0.2
Factor of influence, κ 10 Jm−2

Activation threshold, a 500 Jm−3

Maximal prescribed displacement 5 · 10−4 m
Time step, τ 0.01
Damage profile tolerance, δ 10−6

Two-sided energy inequality tolerance, η 10−3

Table 3: Parameters of the damage model and incremental algorithm

The resulting energetics for the analyzed specimen is displayed in Figure 2 for a representa-



tive choice of the ε and h parameters. Clearly, in its basic version, the discrete solution obtained
by the alternate minimization algorithm fails to provide an appropriate energetic solution to
the problem. The two-sided inequality is satisfied only in the initial stage, where the specimen
stays mainly elastic. At time t ≈ 0.61, the damage propagates simultaneously through the spec-
imen, as manifested by the drop of the sum of the globally dissipated and the reversibly energy,
see Figure 2(a). Even after this instant, however, this quantity increases, which is the conse-
quence of the non-zero value of regularization parameter ε. Moreover, the damage profile still
evolves in the subsequent time levels, leading to the increase in the dissipated energy balanced
by the contribution of the stored energy.
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Figure 2: Energetics of the damage process; (a) without backtracking, (b) with backtracking.

With the backtracking option active, however, the algorithm detects the local minimizer at
t ≈ 0.61 and, following the dotted line in Figure 2(a), returns to the time level where the incre-
mental two-sided inequality is satisfied. After the backtracking stage is completed, the alternate
minimization algorithm is capable of finding an approximate energetic solution, cf. Figure 2(b).

Additional numerical tests summarized in Figure 3 demonstrate the “mesh-independent”
behavior of the method, i.e. the fact that the global energetic response is almost independent of
the discretization parameter h. The influence of the energy regularization parameter ε, however,
is much stronger, cf. Figure 3(b). In particular, it can be observed that, as ε→ 0, the algorithms
tries to reproduce an one-dimensional damage profile studied in detail by Jirásek and Zeman
(2008).
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Figure 3: Convergence of the approximate energetic solution for the inhomogeneous specimen;
(a) h→ 0 m, ε = 5·10−2, (b) ε→ 0, h = 0.02 m; mesh with h = 0.05 m contains 493 triangular
elements, h = 0.03 m corresponds to 1, 193 elements and h = 0.02 m to 1, 549 elements.



An interested reader is referred to (Mielke et al., 2007) for further details and numerical
examples.

Acknowledgment Financial support from the grant No. 106/08/1379 (GAČR) is gratefully
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