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Summary: Lateral vibration of rotors is significantly influenced by their supports 
and by their interaction with the medium in the ambient space. If the disc of the 
rotor is submerged in a liquid and if it vibrates, the pressure field is induced and 
the liquid acts by a force on the wall of the disc. It is assumed that the disc 
performs oscillations only with small amplitudes and it enables to describe the 
produced pressure field by a Laplace's equation and by the relation for the 
boundary conditions. The liquid is inwettable and it means that it does not lean to 
the disc surface and therefore no tangential forces acting on the disc are 
produced. The resulting force is obtained by integration of the pressure 
distribution around the circumference and along the height of the submerged part 
of the disc. Its components are proportional to the disc accelerations and it 
implies that the negatively taken coefficients of proportionality can be considered 
as additional masses. As the bearing gap is very narrow, the pressure field in the 
oil film can be described by a Reynolds' equation. In the areas of a vapour 
cavitation the pressure is considered to be constant. Components of the bearing 
forces are obtained by integration of the pressure distribution in the oil layer 
around the circumference and along the length of the bearing. Lateral vibration 
of such rotor systems is governed by a nonlinear equation of motion. In the 
neighbourhood of the equilibrium position it can be linearized and this enables to 
judge its stability utilizing the natural frequencies of the rotor system. For 
solution of the equation of motion including the transient component a modified 
Newmark method has been chosen. 

1. Introduction 
In a lot of technological applications the rotors are supported by fluid film bearings and have 
the discs partly or fully submerged in various liquids. Lateral vibration of such rotors is 
significantly influenced by their interaction with the medium in the surrounding space. A 
computer modelling method represents an important tool for investigation of their behaviour. 
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The movement of the disc submerged in a liquid or oscillation of the vessel wall produce 
the pressure that acts on the disc and has an influence on vibration of the rotor. In general the 
pressure distribution and the velocity field in a liquid are described by the Navier-Stokes 
equations and the equation of continuity. On certain conditions ( small amplitudes of 
oscillations ) the governing equations can be reduced to the Laplace' one ( Bathe, Levy & 
Wilkinson, 1976 ). Components of the resulting force acting on the disc are then obtained by 
integration of the pressure distribution over the total surface of the submerged part of the disc. 

The hydrodynamic bearings are usually implemented into the computational models by 
means of nonlinear force couplings. The determination of the bearing forces starts from 
solving the Reynolds' equation ( Cameron, 1966, Krämer, 1993 ). 

2. Hydraulic forces acting on the disc submerged in a liquid  
The investigated system is a vessel filled with a liquid in which a disc of a vertical rotor is 
submerged. If the disc vibrates or if the vessel moves, the pressure field is induced and the 
liquid acts on the wall of the disc by inertia forces. To determine their magnitudes it is 
assumed that 

• the disc is circular and its surface is absolutely smooth, 
• the inner wall of the vessel is cylindical of general cross section ( e.g. circular, elliptical, 

etc. ), 
• the surface lines of the interior surface of the vessel and of the outer surface of the disc are 

vertical and parallel, 
• the disc and the vessel are absolutely rigid bodies, 
• the disc and the vessel can move only in the radial direction and their displacements are 

small, 
• the liquid is incompressible, inviscous, and inwettable, 
• vibration of the liquid in the vessel is treated as 2D. 

As the disc performs oscillations only with small amplitudes, the pressure field in the 
liquid can be described by a Laplace's equation ( Levy & Wilkinson, 1976 ) 
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p - pressure, 
y, z - cartesian coordinates, 
n - coordinate in the direction of the outer normal to the boundary, 
an  - acceleration of the point on the boundary in the direction of its normal, 
ρ - density of the liquid. 

Equation (2) can be rewritten into the following form 
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where 

 nznyn sinacosaa α+α=  (4) 

ay, az  - acceleration of the point on the boundary in the y, z directions, 
αn  - directional angle of the outer normal of the boundary ( orientation into the liquid ). 

For solving the Laplace's equation a finite element method can be applied. As shown in 
Levy & Wilkinson, 1976, solution of equation (1) with the boundary condition (2) is 
equivalent to minimizing the functional Ψ 

 ∫∫∫
ΓΓΩ

ρ−ρ−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=Ψ
VD

dspadspadzdy
z
p

y
p

2
1

nn

22

 (5) 

Ψ - functional, 
Ω - investigated region ( area filled with liquid ), 
ΓD - interior boundary of the investigated region - edge of the disc, 
ΓV - outer boundary of the investigated region - edge of the vessel. 

After performing manupulations described in details in Levy & Wilkinson, 1976 the 
functional Ψ takes the form  

 ( VzVzVyVyDzDzDyDy
TT aaaa

2
1 ggggppHp +++−=Ψ ) (6) 

H   - coefficient matrix, 
gDy, gDz  - coefficient vectors, 
gVy, gVz  - coefficient vectors, 
aDy, aDz  - y, z components of the disc acceleration, 
aVy, aVz  - y, z components of the vessel acceleration. 

To achieve its minimum it must hold 
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o  - zero vector. 

Consequently calculation of the pressure results at solving a set of linear algebraic 
equations. The unknowns are elements of vector p  

 VzVzVyVyDzDzDyDy aaaa ggggpH +++=  (8) 

It is evident from (8) that the induced pressure is expressed as a linear combination of the 
acceleration components of the dics and of the vessel wall. 

The liquid is inviscid and inwettable. Therefore it does not lean to the disc surface and it 
means no tangential forces are produced. The components of the total force acting on the disc 
are obtained by integration of the pressure distribution around the circumference and along 
the height ( thickness ) of the submerged part of the disc 

 

 

1214



 

  −⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
αα+αα−= ∫∫

Γ

−

Γ

−

DD

nnDz
1

DznnDy
1

DyDDFy dcosgHadcosgHaRhF

  (9) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
αα+αα− ∫∫

Γ

−

Γ

−

DD

nnVz
1

VznnVy
1

VyDD dcosgHadcosgHaRh

  −⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
αα+αα−= ∫∫

Γ

−

Γ

−

DD

nnDz
1

DznnDy
1

DyDDFz dsingHadsingHaRhF

  (10) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
αα+αα− ∫∫

Γ

−

Γ

−

DD

nnVz
1

VznnVy
1

VyDD dsingHadsingHaRh

3. The equation of motion 
The hydrodynamic bearings are usually implemented into the mathematical models of rotor 
systems by means of force couplings. Lateral vibration of such rotors is then governed by a 
nonlinear equation of motion 

 )(),()()( FBVACSHV xfxxfffxKKxGKBxM &&&&&& +++=ω++ω+η++  (11) 

M, B, K, G, KC  - mass, damping, stiffness, gyroscopic, circulation matrices, 
KSH   - stiffness matrix of the shaft, 
fA, fV , fB, fF   - vectors of applied, constrained, bearing, fluid induced forces, 

xxx &&& ,,  - vectors of general displacements, velocities, accelerations, 
ηV   - coefficient of viscous damping in the shaft material 

and by relations for the boundary conditions. 

Taking into consideration the relationships (9) and (10) the force by which the liquid acts 
on the disc can be expressed in the following manner 

 FVFF )( fxMxf +−= &&&&  (12) 

MF   - matrix of additional mass, 
fFV  - vector of the fluid induced forces acting on the disc due to the movement of the vessel. 

MF can be considered as an additional mass matrix of the disc. It expresses inertia properties 
of the liquid that influence vibration of the disc. In general matrix MF is real and not 
symmetric. Its elements depend on the mutual position of the disc relative to the wall of the 
vessel. 

After a simple manipulation the equation of motion (11) can be modified into this form 

 FVBVACSHVF ),()()()( fxxfffxKKxGKBxMM +++=ω++ω+η+++ &&&&  (13) 

To determine components of the bearing force it is necessary to know a pressure distribution 
in the oil film. As the bearing gap is very narrow a classical theory of lubrication may be 
applied for this purpose. The pressure distribution in the oil layer is then described by the 
Reynolds' equation ( Cameron, 1966, Krämer, 1993 ) 
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where 

 )cos(ech H γ−ϕ−=  (15) 

u1  - circumferential velocity component of the points on the liner interior surface, 
u2  - circumferential velocity component of the points on the journal surface, 
p - pressure, 
c - width of the bearing gap, 
R  - journal radius, 
h  - thickness of the oil film , 
eH    - eccentricity of the journal centre, 
γ  - position angle of the line of centres, 
ϕ, Z  - circumferential, radial, and axial coordinates, 
η  - oil dynamical viscosity, 
t - time. 

The Reynolds' equation holds only in the areas where the hydrodynamic effect occurs. If 
the pressure drops to a critical level, a vapour cavitation takes place. The experiments 
( Zeidan  & Vance, 1990 ) showed that pressure of the medium in such areas remained 
approximately constant. Therefore from the simplest distinguishing level the pressure 
distuibution in the oil film can be described 

 ppd =   for  (16) CAVpp ≥

 CAVd pp =  for  CAVpp <  (17) 

pd  - pressure distribution in the bearing gap, 
pCAV  - pressure of the medium in the cavitated area. 

Components of the bearing force by which the oil film acts on the rotor journal are 
calculated by integration of the pressure distribution pd around the circumference and along 
the length of the bearing 
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FBy, FBz  - y, z components of the bearing force. 

4. Stability analysis of the equilibrium position and transient response of the rotor 
 system 
Stability analysis of the equilibrium position of the rotor is performed according to the real 
parts of the system eigenvalues. Their determination requires to solve a quadratic eigenvalue 
problem 

 [ ] 0)()()(det CSHVF
2 =ω++ω+η+λ++λ KKGKBMM  (19) 
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The transient response of the rotor system is obtained by solving the equation of motion. 
For this pupose a Newmark method has been chosen. This one is implicit and it implies its 
algorithm starts from the equation of motion related to time t+Δt. At each integration step the 
solution arrives at solving a set on algebraic equations that are  nonlinear in this case due to 
the bearing forces. To avoid this manipulation vector fB related to the point of time t+Δt can 
be approximately expressed by means of its expansion into a Taylor series in the 
neighbourhood of time t 

 ...)()( tttt,Ktttt,Bt,Btt,B +−+−+= Δ+Δ+Δ+ xxDxxDff &&  (20) 
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Then substitution of only the linear portion of the Taylor series (20) and carrying out 
several simple operations give the equation of motion related to time t+Δt that has the form 
which requires to solve only a set of linear algebraic equations at the current integration step 

 =−ω++−ω+η+++ Δ+Δ+Δ+ ttt,KCttt,BSHVttF )()()( xDKKxDGKBxMM &&&  

 tt,FVtt,Ktt,Bt,Btt,Vtt, Δ+Δ+Δ+ +−−++= fxDxDfffA &  (22) 

More details on application of this approach can be found e.g. in Zapoměl & Malenovský, 
2000. 

5. Example 
Rotor of the investigated rotor system ( Fig.1 ) consists of a shaft ( SH ) and of two discs 
( D1, D2 ). The shaft is coupled with a rigid frame ( FR ) by two hydrodynamic bearings ( B1, 
B2 ). Disc D1 mounted on the overhung end of the shaft is placed in a vessel ( VS ) filled with 
liquid and is totally submerged. Disc D2 is coupled with a rigid rotor of an electric motor by a 
prestressed flexible belt. The rotor rotates at constant angular speed ( 300 rad/s ) and is loaded 
by the centrifugal forces caused by unbalances of both discs. 

 

 

 

 

 

 

 

 

 
 
 
 Fig. 1: Scheme of the investigated rotor system 
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The task was to analyze stability of the equilibrium position and motion of the rotor after 
dying out the initial transient component of its vibration. 

In the computational model the shaft was represented by a beam like body, both discs 
were considered as absolutely rigid, and the liquid as incompressible, inviscid, and inwettable. 
For the purpose of the calculation the shaft was discretized into finite elements. 
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Fig. 2:  Journal centres equilibrium positions  Fig. 3: Rotor system eigenvalues 
 in bearings B1, B2 
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Fig. 4: Steady state trajectory of the disc centre  Fig. 5: Fourier spectrum 
 

The equilibrium positions of the rotor journal centres in bearings B1 and B2 are evident 
from Fig.2. Distribution of eigenvalues of the rotor system whose parameters are linearized in 
the neighbourhood of the equilibrium position in a Gaus plane are drawn in Fig.3. Real parts 
of all of them are negative and it implies the equilibrium position is stable. Trajectory of the 
disc D1 centre after dying out the initial transient component of the vibration can be seen in 
Fig.4. Even if its shape is rather complicated, the vibration remains periodic. Image of the 
Fourier transform of y displacement of the disc D1 centre is drawn in Fig.5. Its evident that 
the resulting vibration is composed of a number of subharmonic and ultraharmonic partial 
motions. 
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5. Conclusions 
The described method represents a new and complex approach to investigation of a mutual 

intraction of a rotor, of the hydrodynamic bearings, and of the liquid in which the disc of the 
rotor is submerged. Results of the computer simulations showed that the developed method 
behaved numerically stable including the cases when the vibration became irregular. 
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