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Summary: Formation of hot spots as well as non-uniform distribution of the 

contact pressure aredifficulties, troubles imerging in important friction systems, 

e.g. disc brakes or transmission clutches. If the sliding velocity is high enough, 

this effect can arise and can cause vibrations, enhanced wear and material 

damage. Barber (1969) has called the thermoelastic instability a cause of such 

effects. Authors have paid attention to the field of contact mechanics both from the 

angle of experimental research and mathematical modelling as well. 

1. Introduction  

Hot spots and non-uniform distribution of the contact pressure are inconveniences emerging 
in important friction systems, e.g. in disc brakes or transmission clutches. If the sliding 
velocity is high enough, this unwanted effect can become unstable and can result in frictional 
vibration, material damage, excessive wear and brake fading. Authors have paid attention to 
the field of contact mechanics for several years both from the angle of experimental research 
and mathematical modelling as well. Their effort has been focused especially on disc brakes. 

2. Experimental techniques  

The following part of the paper introduces the measuring system that has been developed at 
the University of West Bohemia in Pilsen for the experimental research of thermo-mechanical 
instabilities of disc brakes. The non-contact temperature measuring system consists of two-
colour infrared detectors in combination with optical fibers and data acquisition system. 
Concerning the application to measure temperature field on the brake disc under rotation five 
infrared detectors measuring intensity of thermal radiation at five different radiuses and an 
inductive sensor for the measurement of the disc rotational speed are applied. 

2.1 Non-contact temperature measuring system 

Two-colour infrared detectors cooled by liquid nitrogen are used for the fast non-contact 
measurement of temperature. The detector itself consists of two layers. The upper one, InSb 
detector, is sensitive to short infrared wavelengths while the bottom layer, HgCdTe detector, 
is sensitive to longer wavelengths. The two-colour detectors are designed such a way, because 
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one infrared input is needed. The InSb detector acts as a radiation filter for the bottom 
HgCdTe detector and hence the response curves are not overlaped. Specification of these 
detectors is summarized in Tab.1.  

Tab. 1: Specification of InSb/HgCdTe infrared detectors. 

Detector TOP: 1 mm2 dia InSb  

(Photovoltaic) 

BOTTOM: 1 mm2 HgCdTe  

(Photoconductive) 

Spectral Range 2 – 5.5 µm, peak ≈ 5.0 µm 5.5 – 14 µm, peak ≈ 12.0 µm 

Responsivity in 
Peak 

2.5 × 105 V/W 3 × 105 V/W 

Bandwidth DC – 50 kHz 5 Hz – 50 kHz 

Normalized 
Detectivity in Peak 

1 × 1011 cmHz1/2/W 3 × 1011 cmHz1/2/W 

Dewar Hold Time 12+ hours 12+ hours 

Power 
Requirements 

± 9 – ±15 V DC ± 9 – ±15 V DC 

Infrared radiation is transmitted to the detectors by IR optical fibers. Sensitive end of the fiber 
is located close to the surface whose temperature is being measured. If the surface 
temperature is high the fiber termination is protected by thermal barrier. Spectral transmission 
of optical fiber has to correspond with the infrared detector relative spectral response to 
achieve minimal losses of optical signal. Therefore chalcogenide glass optical fibers have 
been choosen. The spectral transmission of the fiber and relative spectral response curves of 
InSb and HgCdTe detectors are shown in Fig. 1. 

One-colour method (radiation intensity) or two-colour method (ratio of radiation 
intensities of two adjacent wavelengths or wavebands) together with a calibration system can 
be used for the quantitative evaluation of surface temperatures.  

The electrical signal produced by the photon detector can be obtained as 

  ( ) ( ) ( ) ( ) ( )� ⋅⋅⋅⋅⋅⋅=−

2

1

,,det1

λ

λ λ λλλλλε dTMURTRRVFATf peakC ,                      (1) 

where λ1, λ2  [µm] are the minimal and maximal detectable wavelength, Adet [cm2] is active 
detector area, RVF [-] radiation view factor, ε(λ,T) [-] emissivity of the measured surface, 
Rpeak [V/W] responsivity in peak of the spectral response curve, R(λ) [-] spectral response 
function of the infrared photon detector, U(λ) [-] transfer function of the optical system, 
Mλ(λ,T) [W/cm2.µm] spectral radiant emittance. 

The major advantage of the two-colour method is based on the reduction of the emissivity 
influence on the temperature measurement process by means of  two different infrared signals 
bands detection. The ratio of these two signals is proportional only to the surface temperature 
in the case of a grey body (emissivity in both bands is equal). Then the surface temperature 
can be expressed as: 
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where ε  is the emissivity of the grey body.  

 

 

Fig. 1: Relative spectral response curves for InSb and HgCdTe detector and transmission 
curve for chalcogenide glass infrared fiber. 

 

2.2 Application on the brake disc temperature field measurement 

The main part of the measuring system is a fast sub-system for the measurement of brake disc 
temperature field. The above mentioned infrared detectors with optical fibers are applied to 
measure infrared radiation at five different radiuses of the disc. Measuring the disc rotational 
speed by an inductive sensor, the temperature field of the disc surface can be reconstructed. 
The experimental set-up is shown in Fig. 2. 

The application of the measuring system on the brake testing bench is demonstrated in 
Fig. 3. Rotation of the brake disc is driven by electric engine using the car axle shaft. Braking 
pressure is induced by a computer controlled hydraulic piston. The experimental set-up 
utilizes personal car front wheel suspension. The scheme of the experimental set-up and also 
the photo showing installation of the measuring system are shown on Fig. 3. 
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 Fig. 2: System for the brake disc temperature field measurement  – (a) simplified scheme, (b) 
experimental set-up photo. 
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Fig. 3: Experimental set-up of the brake dynamometer rig – (a) simplified scheme, (b) 
experimental set-up photo. 
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3. Mathematical modelling  

Barber (1969) pointed out for the first time the relationship between the onset of hot spots and 
the thermoelastic instability (TEI). Dow & Burton (1972) and Burton et al. (1973) introduced 
a mathematical model to establish critical sliding velocity for instability, where two 
thermoelastic half-space are considered in contact along their common interface. That enabled 
understanding the core of the effect in more detail, because material parameters, sliding 
velocity and friction coefficient were incorporated into their model.  Consequently, Lee & 
Barber (1993) accomplished the next essential step as late as 20 years after. They brought an 
analytical periodical solution that involves the disc with a finite thickness clamped between 
half-spaces. Thus their model finally included a geometrical dimension. Decuzzi et al. (2000) 
contributed to further development of analytical approach in connection with transmission 
clutches. Some difficulties have appeared in the application of developed methods to disc 
brakes where an intermittent contact (the friction pads occupy only the part of the disc circuit) 
occurs and therefore the mathematical solution is no more periodic. The modified method 
proposed in a recent paper (Vold�ich, 2007a) seems an appropriate approach to avoid the 
difficulty.  

Analytical methods can elucidate only the propensity of friction systems to the 
thermoelastic instability and the initial stage of an instability rise only. The assumption of the 
full contact regime between the pads and the disc used by the analytical solution is the major 
limitation. Besides it, it is impossible to consider the material parameters and the friction 
coefficient as time-dependent functions during braking. Further, the intermittent contact 
cannot be appreciated exactly by analytical methods.  Another approach is connected with 
FEM and the Petrov-Galerkin method (PGM) (omitted in common commercial softwares). 
Zagrodski et al. (2001) were the first who suggested a numerical approach that would cover 
both the above-stated limitations and the transition regimes connected with the TEI as well. 
They used the system ABAQUS, where the PGM is implemented. Vold�ich (2004) created 
original software with the PGM for the puprpose to solve  disc brake problems. 

3.1 Analytical approach 

Let us consider the friction system from the Fig. 4. The system consists of layers with finite 
thickness and finite length. The central layer moves with the velocity V and we can consider 
periodical boundary conditions on lateral sides of all layers. The first problem is to solve the 
heat transfer balance  

ii

ii Tk
x

T
V

t

T
∆=

∂

∂
+

∂

∂
ζ  ,  i = 1,2,3,                                                 (3) 

� = 0  for i = 1,3 and  � = 1  for i = 2. Here ki = Ki /ci�i  denotes the thermal diffusivity, Ki is 
the thermal conductivity, �i density and ci is the specific heat. The temperature contact 
between layers i and j is described by the condition Ti = Tj on the contact surfaces. 
Simultaneously, the heat flow generated by friction is 

qij = f V pij ,                                                                  (4) 

where pij denotes a corresponding contact pressure and  f  is a friction coefficient, whereas 
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The second requirement is to solve the contact elasticity problem with the strain plain 
deformations. The loading applied is partly a pressure po acting on the outside horizontal 
boundaries of the friction layers and partly temperatures fields T1, T2 and T3.  

                          

Fig. 4: Scheme of the model with one pair of sliding contacts.         

Let us suppose steady state of the friction system, i.e. that both the outside preassure po 
acting on the friction layers and the sliding velocity V are time-independent. Let us suppose, 
as well, that material parameters and the friction coefficient are independent on temperature. 
Let us further consider an initial perturbation that can be caused by an initial disc corrugation 
or by some other reason. As a result, this perturbation disturbes the constant contact pressure 
p and the temperature field in the direction of the x axis. The matematical solution of the 
problem described above can be expressed in the form (see e.g. Vold�ich, 2007a) 

p(x,t) = po + pam exp(bt + jmx) ,                                                    (6) 

Ti (x,y,t)= To(y,t) + Tam exp(bt + jmx) �i(y)  ,                                              

where t is the time, m = 2�/L  (L is wave length of the perturbation), j = 1−  is the imaginary 
unit and pam, Tam denote the amplitudes of the initial perturbation. Here b = b(V,m) is a so-
called growth rate that characterizes the instability. Some high velocity V is enough tobrings 
on the thermoelastic instability, when b > 0. The function �i describes an elementary 
perturbation mode depending also on parameters b and m. Further, �i(yij) = 1 for values yij 
respond to the contact between layers i and j. 

The situation with the real disc brake is complicated by the intermittent contact. There 
isn’t possible to find any exact analytical solution of the mathematical problem enunciated 
and it is necessary to fall in additional modelling. The issue consists in the convenient 
averaging of physical quantities alongside the disc circuit. The averaged physical quantities 
are the heat flow from the contact surface and the heat capacity of the adjacent layers. For that 
reason, we replace the real coefficient k2 with the value k2/N and we take NK2 instead of K2 in 
(5), where N = 2�/(angle of pad).  

We should also consider more perturbations with different wave lengths in the formula 
(6). Nevertheless, as Vold�ich (2007a) and the other showed, the contribution of the longest 
wavelength is dominant, because the corresponding growth rate b is the biggest here. And it is 
obvious, that the longest wave length L can not be longer than the width of pads. 
 

x 

y 

v 

L 

0 

1  pad 

3   pad 

2   disc 

Sliding contacts 
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Fig. 5: Temperature development of the disc surface measured at the middle disc radius. 
Curves are graded by the step 5s. 

 

Fig. 6: Dependences of the natural logarithm of temperature amplitudes on time for 
the individual hot spots. 

Formulae (6) result from the theoretical mathematical model and they are necessary to be 
verified by measurement, if they are applicable. Convenient measurements were carried out 
on our institut by the experimental technique and the methodology, which we described in the 
second paragraph. Above we present (see Fig. 5) an example of experimental results for the 
following configuration of the disc brake. The outer diameter of the disc was 312 mm and the 
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width of pads were 68 mm. The material of the disc is cast iron, pads are from material 
usually used in automobile industry. The constant sliding velocity of 20 rev/s were kept 
throughout the braking process. We can see in Fig. 5 an example of  the disc surface 
temperature development measured by the sensor placed on the middle disc radius. 
Temperature curves corresponding to the central angle interval from 0 to 360o are graded by  
5s step.  The rise of hot spots amplitudes is evident. The next Fig. 6 can be utilized for its 
quantification. The dependences of the natural logarithm of the hot spot amplitude on time are 
plotted here; for each hot spot just one curve. It is possible to note, that the dependences 
t � ln([Tmax-Tmin]/2) are approximately linear and have more or less the same angular 
coefficient for all hot spots. The advisability of the exponential function in (6) is confirmed by 
the fact above. We obtain the value b � 0.13 s-1 evaluating the experimental data. The shift of 
individual curves in Fig. 6 is due to different initial fluctuations of individual hot spots. The 
disparity of the initial amplitudes is related to the initial disc non-flatness and surface 
waveness, which may not be periodic.  

It is possible to evaluate the growth factor b dependence on design of disk brake 
parameters and on the braking mode by using computations based on analytical approach as 
well. For example, we calculate b = 0.12 s-1 for the situation described above. Numerical 
results agree satisfactorily with results obtained by experiment on experimental device, or 
they are confirmed qualitative by car driver riding opinions.  

We can able to specify the facts leading to b factor rising – first, friction segments width 
increasing, or decreasing its thickness, sliding velocity V increasing, stiffness of friction 
segments material increasing, friction coefficient increasing, thermal capacity of pads 
decreasing, thermal expansivity of disk material increasing, or finally, increasing of its 
elasticity modulus.  

To ensure the stable braking mode is quite difficult, even in the case of a laboratory 
experimental device, so the measuring can be approximate only. That is to say, the material 
parameters of sliding segments and disc are temperature depended whilst the temperature is 
growing at breaking process. That is why the curves in Fig. 5, 6 are limited to short time 
window and why we have to look over the certain difference between the analytical and 
experimental results.  

Next, it is needed to explain the fact, the exponential growth of hot-spots amplitude stops 
early. We can trace three different mechanisms of exponential growth interruption from 
experimental results: 

1)   The friction coeficient f declines with increasing temperature and so the 
friction heat source (4) declines as well. It is impossible to keep steady 
state braking even for the constant sliding velocity V.  Further, a material 
rigidity is lower at higher temperature. Consequently,  the growth rate b 
diminishes throughout braking. 

2)   The wear of pads accompanies every real braking and it depends on the 
local contact pressure p. The pressure is not uniform under pads, among 
others owing to the thermoelastic instability.  Our experimantal results 
show that hot spots move periodically back and forth from the inner disc 
radius to the outer one. 

3)   The contact pressure amplitude  pam exp(bt) from (6) exceeds the initial 
uniform pressure po anyway, if the thermoelastic instability goes on arise. 
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In such a case, the loss of contact under a part of pads occurs. Thus the 
thermoelastic instability comes into a second, strong nonlinear, mode of its 
behaviour. 

3.2 Numerical simulations 

It is possible to evaluate approximately even transient brake modes by analytical approach, 
see Vold�ich (2007a), although it doesn’t follows from previous section 3.1. But, it can be 
done more precisely by numerical modelling based on finite elements method. The main 
reason to treat with numerical methods is given by the second instability stage being 
connected with the contact localization mentioned above, see point 3, section 3.1.  

A difficulty of a suitable numerical method proposing lies in the fact that the appropriate 
Peclet number of the thermal equation (3) is well high for the sliding velocity V under 
consideration. The Petrov-Galerkin method (PGM), Heinrick et al. (1977), appears suitable 
for this case. This method consists in efficient usage of the relation  
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for the discretization of a weak solution T, where W = M+P is a test weight function.  In the 
case of classic finite element method approach  P = 0.  The best choice is now 
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where ∆x and ∆t mean time and space discretization step, and coefficients α and β are 
computed (they depend on the Peclet number and ∆x, ∆t). It is �=

e eMM , where  functions  

Me  are base functions of  time-space elements e. They are linear in space coordinates and 
quadratic in time. The factual implementation of the PGM is described in Vold�ich (2004).  

To illustrate contact localization let’s consider the friction system from Fig. 4 with disc 
thickness 4 mm, segment thickness 6 mm and wavelength 40 mm. Further, usual materials 
(except the Poisson ratio) are considered for disc brakes design. To verify the method and 
program being developed, let us consider aggravated boundary situation (in compare to the 
common disk brake) and let’s choose material Poisson ratio 0.495. Next, let  p0 = 2 MPa, 
friction coefficient  f = 0.4 and friction velocity  V = 5.5 m/s.  We obtain b � 24 s-1 in 
comparison with b � 21 s-1 given by the analytical approach, even for such small sliding 
velocity. The second instability stage and contact discontinuity rising we can see on Fig. 7.  
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Fig. 7: The developments of contact pressure and surface temperatures for the time points 
0.10 s, 0.13 s., 0.15 s and 0.20 s in the course of thermoelastic instability in the described task 
(full line plots the disk surface temperature while dashed line is that of friction pad). 
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4. Conclusions 

The comparison of experimental data and computational simulations shows their qualitative 
correspondence to the consistent effect of material and geometric brake parameters on 
susceptibility to the instability. Although (semi) analytical assessments are sufficient to apply 
for the comparison of two brakes, the computationally demanding numerical techniques 
mentioned are more fitting to simulate real braking regimes. The paper’s authors are also 
confident that dominant initial perturbations are connected with the non-planeness and 
waviness of the brake disc in the motionless state. 
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