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Summary: There are many ways how to model a rotor system with journal 
bearings, but this paper prefers an approach, which is based on the concept 
developed by Muszynska (1986). In contrast to the others, that prefer the lubricant 
flow prediction using a FE method, the Muszynska model can be employed to 
simulate a behavior of a journal vibration active control system by manipulating 
the sleeve position by piezoactuators, which are a part of the closed loop 
composed of proximity probes and a controller. The paper is focused on the 
problem how to estimate the true values of the simulation model parameters.  

1. Introduction 
It is known that the journal bearing with an oil film 
becomes instable if the rotor rotation speed crosses 
a certain value, which is called the Bently-
Muszynska threshold. To prevent the rotor 
instability, the active control can be employed. The 
arrangement of proximity probes and 
piezoactuators in a rotor system is shown in figure 
1. It is assumed that the carrier ring is a movable 
part in two perpendicular directions while rotor is 
rotating. The carrier ring position is controlled by 
the piezoactuators according to the proximity probe 
signals, which are a part of the closed loop (Šimek, 
2007) including a controller.  

 There are many ways how to model a rotor system, but this paper prefers an approach, 
which is based on the concept developed by Muszynska (1986, 2005) and Bently (1986), who 
were supported by Bently Rotor Dynamics Research Corporation or on the lubricant flow 
prediction using a FE method for Reynolds equation solution (Svoboda, 2007). An effective 
way to understand the rotor instability problem and to model a journal vibration active control 
system is an approach based on the Muszynska model. 
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Figure 1. Journal coordinates  
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2. Lumped parameter model of the rotor system  
Let the rotor angular velocity be designated by Ω . This paper proposes 
to use complex variables to describe motion of the rotor and the carrier 
ring in the complex plane. The position of the journal centre in the 
complex plane, origin of which is situated in the bearing centre, is 
designated by a positron vector r . The position of the carrier ring is 
determined by a position vector u . 

 The internal spring, damping and tangential forces are acting on the 
rotor. As Muszynska has stated these bearing forces can be modeled as a 
rotating spring and damper system at the angular velocity Ωλ  (see 
figure 2), where λ  is a parameter, which is slightly less than 0.5, see (Muszynska, 1986). The 
parameter λ  is denominated by Muszynska as the fluid averaged circumferential velocity 
ratio. The external forces refer to forces that are applied to the rotor, such as unbalance, 
impacts and preloads in the form of constant radial forces. The fluid pressure wedge is the 
actual source of the fluid film stiffness in a journal bearing and maintains the rotor in 
equilibrium.  

The validity of Muszynska’s assumption can be verified by experiments. It is known that 
an oscillation starts when the rotor RPM crosses up some value and stops when RPM crosses 
down the other one. A sophisticated experiment shows that the resonance appears at the 
frequency, which is approximately equal to Ωλ , when the rotor is excited by a non-
synchronous perturbation force with respect to the rotor speed.  

 Fluid forces acting on the rotor in coordinates rotating at the same angular frequency as 
the spring and damper system are given by the formula 

 ( ) ( )rotrotrotrotrot DK ururF && −+−= , (1) 

where the parameters, K  and D , specify proportionality of stiffness and damping to the 
relative position of the journal centre displacement vector rotrot ur −  and velocity vector 

rotrot ur && − , respectively. The equation of motion in stationary coordinates is obtained 

 ( ) ( ) ( ) ( )( )δωωλ +=−Ω−+−+ tjmrjDKDM u exp2ururr &&&& , (2) 

where M  is the total rotor mass. The unbalance force, which is produced by unbalance mass 
m  mounted at a radius ur , acts in the radial direction and has a phase δ  at time 0=t . If 

0=u , the equation of motion turns to the form 

 ( ) ( )( )δωωλ +=Ω−++ tjmrjDKDM u exp2rrr &&& . (3) 

 The equation (3) is solved by using Matlab-Simulink in the next part of this paper but 
firstly some experiments are discussed.  

If the system were linear, then the unstable rotor vibration would spiral out to infinity when 
the rotor angular frequency crosses the Bently-Muszynska threshold 

 
λ

π
MK

fCritCrit ==Ω 2 . (4) 

 The frequency transfer function relating a harmonic force F  at the angular frequency ω  to 
the centreline position r is given by the following formula 

ΩλΩλ

 

Figure 2. Model 
of oil film 
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λωω

ω 2

1  (5) 

 If the resonant frequency Ω= x0ω  exists then the dimensionless quantity x  is the 
solution of a cubic equation and x  is simultaneously fulfilling a condition as follows 

 
( ) ( )
( ) ( ) 026

022
222

2232

>−+Ω

=−−+Ω

KMDxM

DxKMDxM λ
 (6) 

If the rotor angular frequency Ω  is approaching the critical frequency CritΩ  then the 
maximum of the ( )ωjGFr  magnitude is reached at the angular frequency Ω= λω0 . 

3. Experiments with Rotorkit system  
To study motion of the shaft in a journal bearing the Rotorkit device, product of Bently 
Nevada, is employed. The Rotorkit shaft was equipped by two flywheels. To find out the 
model parameters, the measurements of the journal position time history during run-up and 
coast-down were carried out. The RPM profile is shown in figure 3 while the time history of 
the journal coordinates X ( ( )rRe ) and Y ( ( )rIm ) is shown in figure 4. The increase and 
decrease in RPM is at the constant ramp rate. As it is evident, the journal steady-state 
oscillation begins when the rotor RPM crosses up the threshold of 2400 RPM and ends when 
the rotor crosses down the threshold of 1700 RPM. This phenomenon is known as an oil whirl 
(Tůma &Biloš, 2007). 
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Figure 3. Time history of the rotor RPM  Figure4. Time history of the journal coordinates 
X and Y 

 The rotor has a residual unbalance which is exciting a component at the frequency Ω  (1 
ord) in the frequency spectrum of the journal centerline coordinates. The self excited vibration 
at the frequency Ωλ  (0.48 ord) results from the oil fluid effect. Both these components (0.48 
and 1 ord) dominate in the journal vibration frequency spectrum.  

4. Simulink model of the rotor system  

The equation of motion (3) contains a complex vector ( )tr , as an unknown function of time, 
and the equation parameters are complex quantities as well. The complex function can be 
replaced by the real and imaginary functions and solved as many similar models. In this 
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paper, an approach based on Matlab-Simulink feature, which allows connecting blocks by 
complex signals, is preferred. Except of the integration function, all the blocks employed in 
the Simulink model for the motion equation (3) can work with the complex parameters and 
functions.. The complex signal is decomposed into the real and imaginary parts for individual 
integration operation and then they are combined to the complex signal again.  
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Figure 5: Model of a journal motion in a plane perpendicular to the rotor axis 

 The Simulink block diagram for the motion equation is shown in figure 5. The system is 
excited by an unbalance force rotating at the same angular velocity Ω  (OMEGA) as the rotor 
and by the non-synchronous perturbation force rotating by the angular velocity ω (omega), 
amplitude of which is proportional to the square of the angular velocity.  
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Figure 6. Non-linear block D, K, lam 

 The parameters K and D, specifying oil film stiffness and damping, are a function of the 
journal centerline position vector, namely the oil film thickness. It was proved that the closer 
position of the journal to the bearing wall and simultaneously the thinner oil film, the greater 
value of both these parameters. Some authors, such as Muszynska, assume that it is possible 
to approximate these functions by formulas  
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 ( )( ) ( )( ) ( )( ) 512
0

22
0

32
0 1,1,1 eeDDeKK rrr −λ=λ−=−=  (7) 

where e is a journal bearing clearance. The non-linear block D, K, lam in figure 5 has its inner 
structure shown in figure 6. The factors, which are multiplying the parameter K, D, lam, as a 
function of the position vector relative magnitude, are shown in figure 7. The authors of this 
paper analysed the other formula structure as well (Tůma & Bilošová & et al, 2008).  
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Figure 7. Effect of the position vector relative magnitude related to the bearing clearance on 

the relative value K, D, λ  (Lambda) related to the initial value ( ( ) 0abs =r ) 

5. Simulation study of the model behavior  
The numeric solution of the equation of motion is obtained by using Matlab-Simulink. As the 
rotor system stability margin depends on the oil film stiffness and rotor mass, the first step is 
to estimate the parameter K . This task is not an easy problem due to the rotor static load by 
the gravity force and the dependence of the oil film stiffness on the rotor eccentricity. The 
second problem is an estimation of the parameter D , which predefines the rotor system 
vibration mode at the angular frequency, which is approximately equal to the half of the rotor 
angular frequency.  

 The agreement between the mentioned experiment and the simulation model is reached 
for the following values of the parameters  

M =1.6;   %  [kg]  rotor mass 
lam0 = 0.475;   %  [-]  fluid averaged circumferential velocity ratio (lambda) 
K0 = 4000;   %  [N/m]  oil film stiffness 
D0 = 1000;  %  [Ns/m]  oil film damping coefficient  
e = 0.0002;  %  [m]  clearance in the journal bearing 

umr  = 0.00001; %  [kgm]  product of the unbalance mass m  mounted at a radius ur . 

 The value of the product umr  corresponds to the ISO balance quality grade between G 1 
and G 2.5 at 2500 RPM. The simulation starts at the zero value of the rotor speed. The 
simulation results are shown in figure 8. The initial journal position is situated in the point, 
where the real part of the position vector is as follows ( ) 0Re =r , while the imaginary part of 
the position vector is a value satisfying to the solution of the equation ( ) MgK −=rIm . The 
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experiments show that if the rotor is in an unstable state (vibration are limited only by the 
bearing wall), then the frequency of vibration is slightly less than half the rotor rotational 
frequency Ω . The ZOOMs of the position vector real and imaginary parts just before and 
after the vibration onset, which are shortened into the time interval of 0.2 s, are shown in 
figure 8 as well. Comparison of the number of waves in the time intervals of the same length 
shows that the frequency of vibration drops to half the frequency before the vibration onset. 
The effect of the damping parameter D0 for K0 = 4000 N/m on the shape of the journal 
centerline orbit plot during run-up is shown in figure 9. The orbit for D0 = 2000 Ns/m is the 
most similar to the measurement results. It can be concluded that the behavior of the 
simulation model is almost the same as the true rotor system (Tůma & Bilošová et al, 2008). 

 All the simulations are done by using Matlab-Simuling with the variable integration step 
and the ODE45 integration method setting.  
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Figure 8. RPM profile and time history of the journal centreline coordinates till the onset of 

the fluid induced vibration starts up and ZOOMs just before and after the vibration onset 

6. Analysis of the linear frequency response function  
As the measurement of the rotor system response to the non-synchronous perturbation is not 
available yet, the simulation is replaced by the evaluation of the frequency response 
magnitude (5) as a function of the dimensionless frequency rotff , which is shown in figure 
10. The magnitudes of the frequency response on the figure left side are evaluated for the 
rotor steady-state speed 1800 RPM and for some multiples (1x, 2x, 5x and 10x) of the initial 
values of the parameters K0 and D0. The resonant frequency is approximately at the 
mentioned dimensionless frequency λ , i.e. slightly less then 0.5.  
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Figure 9. Orbit plot for the oil stiffness K0 = 4000 N/m and various values of the damping  
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Figure 10. The frequency response magnitude as a function of the dimensionless perturbation 

force rotational frequency related to the rotor rotational frequency 
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 The magnitude of the frequency response on the figure right side differs in the value of the 
parameter D0. According to the experiments (Muszynska, 2005), the resonant frequency is 
greater than the dimensionless frequency 0.4. It can be concluded that the assumed 
relationship between the values of K0 and D0 seems to be satisfying.  

7. Conclusion 
The lumped parameter model of the journal centerline motion in the journal bearing is based 
on the Muszynska’s theory. The equation of motion contains the complex vector and 
parameters. The main goal of the simulation study was to verify the model principle by 
comparing simulation results with results of experiments, which are described in many 
papers. The paper is focused on the coincidence between the model and experiment when the 
instability of motion and the vibration mode at the non-synchronous perturbation occur. The 
critical signification has assumption about the stiffness, damping and fluid averaged 
circumferential velocity ratio as a function of the journal centerline position vector 
magnitude. In comparison to the previously published paper (Tůma & Bilošová et al, 2008), 
the approximation submitted by Muszynska (2005) was tested.  

 The simulation of the rotor system using Matlab-Simulink confirms the agreement 
between the Muszynska’s model and experiments.  
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