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Summary: The two dimensional (2D) model of a rider and a Powered Two-

Wheeler (PTW) is proposed in this paper. The needs of such type of a model are 

summarized. The model is composed of rigid bodies connected by kinematic 

joints. The adopted modeling methodologies were the analysis in time domain 

using absolute Cartesian coordinates of the bodies. The model parameters, code 

implementation and simulation results are presented for a testing example. The 

results are discussed and conclusions are taken. 

1. Introduction 

According with the European Commission, it was registered 50 000 casualties in the year of 

2001 in the European roads (Tostmann, 2006). This number is decreasing slowly with the 

efforts of several entities, but the ratio of the casualties involving powered two-wheelers 

(PTWs) remains almost equal. The contribution of the PTWs is a total of 20 %. 

In the PTW riding, the influence of the driver is important for the particular behavior of 

the system (Imaizumi et al., 1996). Usually, for the multi-body dynamical analysis of PTW 

simplified models of the rider, which using one or two bodies to represent all the upper parts 

of a human body (head, neck, thorax, abdomen, pelvis, upper and lower arms with hands), are 

employed. The difficulty to implement and control a more complex model of the human body 

with more degrees of freedom is the reason for the usage of the model consisting of one or 

two bodies. The aim of this paper is to develop a more complex model of a human rider and 

PTW intended for the simplified dynamical analysis and for the testing of control algorithms 

proposed in the next steps of the research. 

The model will be useful for dynamical analysis of PTW accidents by simulating various 

pre-crash and crash scenarios and evaluation of the probability of rider’s injuries. 

2. Mathematical model 

The development of the two dimensional rider and PTW model prepared according to the 

literature data can be divided into two main parts. 

The human model was implemented using anthropometric data (Robbins, 1983), 

considering the lower segments of the body (legs) as a part of the PTW frame and the hands 

as a part of the handlebar. The five body model was used for the human body. It consists of a 
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head, a neck, a body (thorax, abdomen and pelvis), an upper arm and a lower arm (see Fig. 1). 

The PTW model was implemented using the data from Suzuki GSX-R1000K1 (Sharp et al., 

2004). The PTW was considered as the system of five bodies – a rear wheel, a front wheel, a 

swing arm, a main body (frame, handlebar, upper fork, hands, upper and lower legs, and 

foots), and a lower fork. The PTW was fixed to the ground in the rear wheel and the front 

wheel was constrained in the horizontal plane for a basic dynamical analysis. In the total, the 

assembly of the human body and the PTW is characterized by ten joints (nine revolute and 

one prismatic). The joints are actuated by passive force elements (spring-damper elements). 

 

 
Fig. 1: Schematic representation of the Human body and PTW model (not to scale). 

 

2.1. Theory background 

Lagrange dynamics (Shabana, 2001) was used in order to form the mathematical model. Each 

body, performing planar motion, is described by three physical (Cartesian) coordinates. Two 

coordinates define the translation of the body center of mass, 
T

i i i

x y
R R =  R , and the third 

defines the orientation of the body, θ . 

The position vector of the arbitrary point of body i  in the global inertia coordinate system 

can be expressed by 

 i i i i= + ⋅r R A u , (1) 

where iA  is the transformation matrix due to the rotation of the local body reference frame 

and 
T

i i i

x y
u u =  u  is the local coordinates of the point in the body reference frame. 

For each body we have generalized displacement vector 
T

i i i

i x y
R R θ =  q . The overall 

configuration space of the whole multibody system can be defined by the vector  

 
1 2 3

T
T T T T

n
 =  q q q q q� . (2) 
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To define the connection between the several bodies, we take a set of constrains. The 

constraint equations will be given by the vector ( ),tC q , composed of particular constraints 

 ( ) ( ) ( ) ( )1 2, , , , 0
c

T
T T T

nt t t t = =
 

C q C q C q C q� . (3) 

The Jacobian matrix in the form 
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 (4) 

plays the important role in the multibody system equations of motion derivation. 

The mass matrix for a particular body can be described by equation 

 
i

i

i

m

J

 
=  
 

I 0
M

0
 (5) 

while for all bodies one can obtain 

 

1

2 0

0

b

i

n

 
 
 
 

=  
 
 
 
  

M

M

M
M

M

�

�

. (6) 

After applying Langrange’s equations and several modifications, we get the system of 

differential-algebraic equations (e.g. Shabana, 2001) defined by 

 

T

eq

dq

    
⋅ =    

      

QM C q

QC 0 λ

��
, (7) 

where M  is the mass matrix, 
qC  is the Jacobian matrix of constraints, q��  is the acceleration 

vector, λ  is the vector of Lagrange multipliers, 
eQ  is the vector of external forces, and 

dQ  is 

the vector that originates from the differentiation of the constraints, for our case given by 

equation 

 ( )d q q
= − ⋅ ⋅Q C q q� � . (8) 

In order to eliminate the Lagrange multipliers in the system (7), the equations can be 

modified and rewritten in the form 
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q e dλ λλ= ⋅ + ⋅λ H Q H Q , (9) 

 1 1 T

e q

−= ⋅ + ⋅ ⋅q M Q M C λ�� , (10) 

 where the variables λλH , 
qqH  and 

qqH  are given respectively by  

 ( )
1

1 T

q qλλ

−−= ⋅ ⋅H C M C , (11) 

 1 1 1T

qq q qλλ
− −= + ⋅ ⋅ ⋅ ⋅H M M C H C M , (12) 

 1T T

q q qλ λ λλ= − = − ⋅ ⋅H H M C H . (13) 

2.2. Joint definition 

To describe the rider and PTW multibody model, we have a total of nine (9) revolute joints 

and one prismatic joint. The joint passive actuators (springs and dampers) with the linear 

parameters obtained from the literature were introduced in order to represent suspension 

elements of the motorcycle and simplified physiological behavior of human joints. 

2.2.1. Revolute joint 

When two bodies are connected by a revolute joint, only relative rotation is allowed between 

both bodies. The figure 2 depicts two rigid bodies i  and j  that are connected by a revolute 

joint in the point P . It is clear from the figure that constraint points can be defined by 

absolute coordinates with respect to the global inertia coordinate system and thus the 

kinematic constraint conditions of the revolute joint can be stated by equation 

 i i j j+ − − =R r R r 0 . (14) 

A special case arises when one of the bodies is the ground. In this case we get the relation 

expressed by 

 i i+ − =R r c 0 , (15) 

where c is the constant vector representing the position of the constraint point on the ground. 

 
Fig. 2: Revolute joint (taken from Shabana, 2001). 
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2.2.2. Prismatic joint 

A prismatic (translational) joint allows only relative translation between two bodies along the 

joint axis. Two degrees of freedom are constrained by this joint, defined by the respective 

equations. The definition of the constraint can be set by several ways. The adopted 

methodology is illustrated in Fig. 3. 

 

 
Fig. 3: Prismatic joint. 

 

The adopted solution was the definition of the parallelism (no relative rotation) between 

two bodies  

 0i j
cθ θ− − =  (16) 

and the coincidence of the point iP  with the joint axis defined by the points jP  and j
O   

 

1

2

1 2 1 2 0

i i i j i j

p p

i i i j

p

x y y x
p p p p

 = + ⋅ − − ⋅


= + ⋅ −


⋅ − ⋅ =

p R A u R A u

p R A u R , (17) 

since the translational axis in our case crosses the origin of the body reference frame. 

2.3. Baumgarte’s stabilization method  

It is the fact that the constraint violation results from accumulated numerical integration errors 

and becomes more apparent with stiff systems (i.e. when natural frequencies of the system are 

widely spread). Even with the initial conditions not violating the constrains equations, during 

the course of numerical integration the numerical errors cause the violation of the constraint 

equations. The constant distance between two points can cease and the points move away 

from their initial position (Flores Fernandes, 2004; Hajžman & Polach, 2007). 

When we are solving the equation (7), we are only satisfying the second derivative of the 

constraint equations. The solution can be improved by the replacement of the definition of the 

vector 
dQ  using expression 
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 ( ) ( )2 ,d q qq
tα β= − ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅Q C q q C q C q� � �  (18) 

The parameters α  and β  are arbitrary positive constants. It was not described the most 

optimal way how to choose these parameters in the literature. It depends on the nature of the 

solved problem and the suggestion of the parameters can be done by experimental tests. 

3. Simulations, results and discussion 

The described multibody model was implemented within MATLAB code (version 2007a). 

The numerical simulations were performed using the integration function ode113 with a 

maximal step time of 2 ms, a relative error of 410−  and an absolute error of 610− .  

The initial positions and rotations of the centers of mass and inertial properties of the 

bodies are summarized in Tab. 1 and Tab. 2.  

For visualization proposes, the user can see a list of various plots, and the animation of an 

entire simulation, displaying the PTW and the rider moving along the time. 

 

Tab. 1: Initial position and rotation of the various centers of mass. 

 Body number 
i

P
x  

i

py  iθ  

 - [ ]m  [ ]m  [ ]º  

Rear wheel 1 0.306 0.306 0. 

Rear suspension 2 0.61523 0.36053 -0.1745 

Front Wheel 3 1.82512 0.290 0 

Fork 4 1.77382 0.43095 1.2217 

Frame 5 1.01252 0.62296 0. 

Trunk 6 0.91638 1.17101 1.7453 

Lower arm 7 1.34786 1.21108 0.3263 

Upper arm 8 1.10947 1.33741 0.5882 

Neck 9 0.97523 1.50486 1.7453 

Head 10 0.99887 1.63880 1.7453 

 

Tab. 2: Mass and inertial moment of all bodies. 

 Body number i
m  

i
J  

 - [ ]kg  
4

10 m
− ×   

Rear wheel 1 15.500 5214.20 

Rear suspension 2 10.000 2459.20 

Front Wheel 3 20.000 7490.88 

Fork 4 4.000 22.40 

Frame 5 152.362 43361.57 

Trunk 6 37.542 1011.218 

Lower arm 7 4.044 61.850 

Upper arm 8 3.538 24.206 

Neck 9 0.965 24.206 

Head 10 4.137 22.1552 
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3.1. Numerical example 

Several simulations were performed to see the behavior of the model in several scenarios. In 

order to illustrate the capabilities following simulation were proposed: the first 3 seconds to 

observe the stabilization process (equilibrium) without any horizontal motion, then 

acceleration by 4 seconds followed by 3 seconds of stabilization, and 3 seconds of 

deceleration (80% front wheel and 20% rear wheel) and the following time to stabilization. 

The system dynamic response for 20 seconds of simulation for the PTW frame, trunk and 

head is illustrated in Figs. 4 until 9 respectively. The initial and final position of the model is 

illustrated in Fig. 10. Horizontal direction is denoted by xx and vertical direction by yy. 
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Fig.: 4: Frame oscillation in xx direction. 
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Fig.: 5: Frame oscillation in yy direction. 
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Fig. 6: Trunk oscillation (translational). 

 

0 2 4 6 8 10 12 14 16 18 20
-0.2

-0.1

0

0.1

0.2

A
n
g
le

 [
ra

d
]

Trunk oscilation

0 2 4 6 8 10 12 14 16 18 20

-2

-1

0

1

2

A
n
g
u
la

r 
V

e
lo

c
it
y 

[r
a
d
.s

-1
]

0 2 4 6 8 10 12 14 16 18 20

-20

-10

0

10

20

Time [s]

A
c
e
la

ra
ti
o
n
 [

ra
d
.s

-2
]

 
Fig. 7: Trunk oscillation (rotational). 
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Fig. 8: Head oscillation (translational). 
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Fig. 9: Head oscillation (rotational). 
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Fig. 10: Initial and final position of the model. 

 

The simulation shows that for typical acceleration and deceleration values in the PTW the 

vibrations are relatively low. We can get in this stage the response of the system to several 

external excitations, which allow a better understanding of the system dynamics. These 

simulations will be improved with more complex joint definitions and compared with 

experimental data taken in volunteers in laboratory (pre-defined acceleration and brake 

maneuvers) and in real traffic environment. 

The short movements of the head and the neck are obtained by the linearity of the used 

spring/damper and high stiffness in this anatomical position. The real values are for a relaxed 

articulation lower for this range of movements. The active joint wills stiffness too, but with a 

time delay by the answer time of the human body (reflex time). The used values were 

compromises between a passive model and a more realistic behavior. In this stage the value of 

damping was arbitrary, by the lack of information in the literature for this parameter. 

Conclusions 

The needs to understand the behavior of the human body in the position of a driver in a PTW 

is motivated by the investigation of some problems concerning accidents and by searching 

solutions for the safety improvement.  

The presented work proposes the multi-body model that is able to analyze the planar 

motion of a rider and a PTW. The possibility to analyze acceleration, cruise and brake 

scenarios are possible, giving a better information of the human influence in the PTW 

behavior. 

The fact that the 3rd axis is not presented is a limitation in the level of details, but 

advantage for the better control of the parameters in the given plane. Some of the planed 
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laboratory tests are taken in that plan with such type of scenarios (a constant acceleration or 

deceleration) 

The need of experimental data in the present stage is a limitation for validation purposes. 

The tests in preparation will give the feed-back to validate and improve the model. 

The change in the joint stiffnesses to more real curves must be followed by close-loop 

control too. This allows each human segment to move in a more realistic way. 

The outputs of this model will help too in the parameterization of a 3D human body 

model, being implemented too in CAD/ CAE software.  
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