National Conference with International Participation

ENGINEERING MECHANICS 2008
oos Svratka, Czech Republic, May 12 — 15, 2008

VIBRATION OF THIN RECTANGULAR VISCOELASTIC
ORTHOTROPIC PLATES UNDER TRANSVERSE NON-STATIONARY
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Summary: The contribution is a part of the system investigation specialized to
bending vibration of the rectangular thin 2D plate in case of analysis of the
various model of plate influence, reological properties of the excitation loading
and other initial assumptions. The solution of the plate for Kirchhoff, Rayleigh
and Zener model of the standard body for general excitation loading. The
approximate analytic solution for 2D will be compared with FEM solution of 3D
plate for loading in form of Heavisid’s function (jump).

1. Introduction

The presented article is a part of systematic investigation of transient stress and deformation
of the bodies made from nonconventional materials, first of all from plastic — polymers,
composites etc. The amount of the utilization of these mentioned materials is continuously
rising in the industry production. According to the specific properties of these materials, first
of all the capability to dumping amplitudes of distributing excitements, the description
demand and transient stress state and deformation in bodies modeling is growing. The work is
aimed to the bodies with significant viscoelastic and anisotropic properties.

Already from first half of the twentieth century the attention is devoted to the theory
progress of viscoelasticity are stated by Kolski, (1958) and wave phenomena investigation in
two dimensional bodies.

In the second half of the twentieth century the investigation is extended with transient
phenomena in two dimensional viscoelastic bodies are stated by Weaver, Sachse and Niu
(1989) and in consequence to development of the elasticity theory of anisotropic bodies are
stated by Lechnickij (1977), Hearmon (1965), Tiang (1996), Mamrilla and Mamrillova
(1988), dynamic of the elastic anisotropic plates are stated by Hermon (1965) Lechnickij
(1947, 1957), Ambarcumjan (1987) and statics of laminate anisotropic plates (Whitney, 1987)
the solution is developed. At first the stationary later the transient solutions of the stress state
and deformation of viscoelastic anisotropic (orthotropic at first of all) plates were determined
are stated by Sobotka (1984), Volek 1990).
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The presented models which defining the solution assumptions enable creation of the
system of particular various cases combination. The solutions and comparison of this cases
make possible to analyze its influence to time and dimension field of searched quantities,
above all the displacements velocities, stress components and deformation. The basic
variation of all cases is model of elastic isotropic body from point of view based on reological
properties of continuum.

The analytical approximate solution of elastic and viscoelastic plate for particular cases is
compared with FEM solution for 3D plate which will performed in finite element method
system MSE Marc (UT AV CR Plzefl) and in selected cases will be both these solutions
compared with results evaluated with experimental methods. The investigation will be
performed by laser interferometer method or electric resistance tensiometers method (UT AV
CR Praha).

The significance of the input models parameters and assumption should be obtained from
the systematic investigation and comparison of particular cases.

The approximate solution of the thin 2D plate loaded with jump force F(t) = Fy.H(t) was
performed fig.1 for combination of the plate models and material models.

A) Model of plate : Kirchhoff, Rayleighy

Aa) Model of material: Voigt-Kelvin, special orthotropy are stated by Soukup, Volek
(2007a)

Ab) Model of material: Maxwell, special orthotropy are stated by Soukup, Volek (2007b)
and Soukup, Volek and Skocilas (2007)

B) Model desky: Fliige, Mindlin
Ba) Model of material: Maxwell, special orthotropy are stated by Soukup, Volek and
Skocilas (2007).

2. Methods

In presented contribution is devoted the problem solution for model of the plate: Kirchhoff
and Rayleigh and model of plate material: Zener — standard body with special ortotropy.

The investigation of the transversal vibration of the plates using the approximate methods
of thin 2D plate theory results from the assumed conditions. These assumptions define input
parameters relations: the model of the plate geometry and its deformations are stated by
Babuska and Li (1992), the model of the reological material properties, the model of the
boundary conditions — the plate suspension, the time and space distribution of the external
excitation vertical loading etc.

The fundamental problem is the acceptability of these simplifying assumptions. The
question is how these assumptions affect the solution procedure and mostly the solution aim
to obtain the dependence of fundamental mechanical quantities (i.e. displacement, deflection
angles, velocities, accelerations, forces, moments, etc.) on time. The solution is demanded at
the arbitrary place of the plate for the specified support and for the generally specified
transient external transversal excitation loading.

We assumed the followed presumptions based on the solution of the several cases:
- the model of the rectangular 2D plate with less thickness than surface dimensions
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- the model of the plate deformation — Kirchhoff-Love, Rayleigh, Fliigge it is solved in
Babuska (1992), Timoshenko-Mindlin-Reissner models it is solved in Reissner (1945)
obr. 2

Fig. 1 Model under study Fig. 2 Element of deflected plate

- the model of the simply supported plate — fig. 1

- the external exciting transversal transient loading defined by arbitrary integrable function
F(t) - fig. 1.

- the model of the reological properties — the isotropic and anisotropic (special or general
orthotropy) continuum, for linear models — elastic Hook, viscoelastic Voigt-Kelvin,
Maxwell, Zener models, for generally anisotropic viscoelastic model, hereditary-
materials — Volterra (it is solved in Volterra, 1951), Boltzmann, with limited possibility
to obtain the parameters for particular models.

Hooke’s model E G pu
Voight-Kelvin’s model E G u
oe ;
1T o, = b[j &+ d p
N o
N, v
Maxwell’s model E G u A m, v
oo 0¢ .
ot ot
Zener’s model E4 Gy iy
i _ J
o, +clj——bij€j dU "
E2Gup, MoV
Viscoelastic Elastic
Anizotropic Qg Oy + CyyOy =by &4 +dy €y 4y 0y =byy €y
Orthotropic o, =be, +d;L(g,) o,=b;¢,
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Voight - Kelvin Maxwell, Zener

o¢ ., f
Lle, ()= L(e,(0)=[K =)z, ()dz
0
Model of body material
Boltzmann ‘
o, =bys, +d,L(s)) Lle,0)=[K. (-0, (2)dr
0
Voltera L ¢,
o, =bye, +d,L(s,) Lle,0)=[K (¢t -7) ~ldz
0

The equation for anisotropy linear viscoelastic material is stated in Shu and Onat (1965).

‘ o¢,
o, =d;L(¢;) Ll.(g/.(t))=J.Ki(t—T) Ldrt
« I or
0, b, b, by 0 0 01(e
0, by by, by 0 0 01l &,
05 |_ by by, by, 0 0 0]l & +
o, |0 0 0 b, 0 0fle]|
(o 0 0 0 0 b, 0] &
o 0 0 0 0 0 blls
d,L, d,L d,L 0 0 0 | &
d, L, d,L, d,L, 0 0 0 | &
N d, L, d,L, diL, 0 0 0 | & )
0 0 0 d,L, 0 0 || &
0 0 0 0 d L, 0 || &
0 0 0 0 0 deLe|\ €6
O-[ = {0170-2’0-3’0-476550-6}T = {O-x’o-y’o-z’z-xy’rxz’ryz }T (2)
gj:{81982783784985986}T:{8X98y9€zayxy97xz’7/yz}T (3)

Constitutive equation of the stress component in form of deformation components
function

t t
5. (1— _5 (t—
o, =be, +bye, +d, [ e Vdr+d, e Vdr
0 0

t t
_ _5y(t_r) -0, (t-71)
o, =by&, +bye, +d,[¢.e dr+dy[ee ™" Vdr (4)
0 0

t
_ =0, (t=17)
Txy - b447/xy +d44J.7xy e " dT
0
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where
b11 = bxl +bx2 >

b21 = byl /leyl +by2 ﬂxy2 5 bzz = by] +by2
E E
b, =——"—, by =—2
l_ﬂyxl /’lxyl l_ﬂyxl ﬂxyl
E E
by=—t—, S
l_ll’lyxz /’lxyZ l—ﬂyxz ﬂxyz
b,-J-:G]-l-Gg, i=j=456
_E EX VX — _
d,L, = O (e e dr d,L = #5 jgye 5.t T)dT,
1- Vyx ny 0 1— Vyx ny 0
-E v t s (s _ o
dzle = 1— s §y ng %0 )d dzsz _1—5 _[8 & (- )d
Vyx ny 0 Vyx ny 0
dyL; = =G, xyI ype " dr,  i=j=4,5,6
§x = ExZ , 5y — 2 , 5xv :i.
2, =

b12 = bxl ll’lxyl + bx2 /’lxyZ H

Stress components in form of displacement w function
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t
e "dr+d
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Momentums in form of displacement w function
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where

X :h_3 Exl + ExZ , Dx’u :h_3 Exl luxyl + ExZ /uxyZ
12 1 - /uyxl quyl 1 - ﬂyleuxyZ 12 1 - ll’lyxl luxyl 1 - ﬂyleleyZ
Dyﬂ — h_3 Eyl lLlyxl + EyZ luyx2 , Dy — h_3 Eyl + Ey2
12 1 - ﬂyxl ﬂxyl 1 - ﬂyxZﬂxyZ 12 1 - ﬂyxl ILlel 1 - ﬂyxZﬂxyZ
» L h3 D ) L ]’l3
1-v,v, 12’ Yo l-v, 127
E E
5 ===, 5=, 5=,
A, y n
/N /N
nyl_B 1° DryZ E 2 D Dryl+D
The resulting motion equation of thin 2D plate
od
For Kirchhoff’s model oo, =0, 2 =0
ox oy
. @ : oD :
For Rayleigh’s model o, _09 ZV , »_ 90 zv
Ox Ox Ot dy  Ox ot
In other form
o* ’m,, ’m, oD 0D PE
nZX+2 —+—— -+ —+———ph sz—p(x;y;t)
ox ox0y  Ox ox oy ot

after substituting to my, my,, m, we arise to integral-differential equation

D
ox?

28y Yoyt PR ox’oy’

. 4 4 t 4 oD
@j(g T ow j e 4D 5, j Ow_ ot g, 0P, OOy
o\ Oy

™ ox*oy? o Ox* oy’ ox 0Oy
0w
+ph =—p(x;y;t
ph=3 p(x;y51)
oD
For Kirchhoff’s model —{a(;&+ - z j =0
X 4
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aq) , 3 2
For Rayleigh’s model - %+ == h—a—Vzw
ox oy

Solution of equation (6) is possible to search by Fourrier’s method in form double-
consecution

W) = LI OX @Y () (10)
Boundary condition of the simply supported rectangular plate satisfy by function
X(a,x)=sin(a,x) where a, = % Y(B,y)=sin(B,y) where B, = %
Similarly it is possible to express the Fourrier’s method the external excitation loading in
form

p(x;y;t) = P(x; y) T ()

where function Tx(¢) define time course of the excitation vertical loading and function
P(x;y) express its distribution on plate surface.

After substituting expression w(x,;y,¢) according to (10) into the equation (9) and after
carrying out the scalar product with regard to orthogonal function X(«,x) and Y(f,y) we

arise to integral-differential equation for function W(t) after modification.

dZW(t) ! S ! -3, (t-1) ’ -6, (t-1)
eI AW ()= A, [W (D) Vdr— A, [W()e ™" dr— A, [W(r)e ™" Vdr = AT, (1)
t 0 0 0
where
4 =|p.at+(D,,+D,, +4D, ) p2+D, B4,  4,=Ds(at +v, a2 p2)a"
A3 :Dyéy(ﬂ: +Vyxar2nﬂnz )A_l b A4 :nyé‘xyariﬁnz A_l (11)
ab
A5 — 00 — A—l
[[[X(@x)Y(B,)] dxdy
00
where A= ph+0 for Kirchhoff’s model
h3 2 2 : )
A= ph+ pa(am + 5 ) for Rayleigh’s model
After arrangement A=ph¥,,
where VY =1 for Kirchhoff’s model

mn
2

¥ o=l +iz—2(a,i + ﬂf) for Rayleigh’s model
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For supposed excitation loading py = const. [Pa] on circle surface 7 c” with center in the
point xg, yr is the coefficient p,,

P = [ [ P31 X (2 )Y (B,y)dxdy

given by expression

2F ) .
pmn = _OJI (ymnc) Sln(ame ) Sln(ﬂnyF) (12)

mn

where  y,, =+Ja. +p; pro  F,=p,zc’

and J,(y,,c) 1s Bessel’s first rank function, first order for argument y, c

and next

ab

ab
[1IxX (2,0 (B,)] dxdy=—
00 4
in this case it is possible to write coefficient A5 in form
8F,

45 = J1 (7 me)sin(a,, x; )sin( 5, y) (12a)
abphc

It is suitable to solute the integral-differential equation (10) by application of the Laplace’s
transformation. After transformation we arise to

W) W), W)

ﬁi?@)+Aj?@)—Azs+5x A3S+5y A4S+5a::A,—ﬁ{ﬂ
which could be arranged in to the form
W (s)= AT, (s)F(s)
where F@)=s3+iﬁz+““+“° (13)
Db s
i-0
where a,=0,+6,+0,, a,=06,0,+60,+5,0,, a,=06,0,0,
and next b, =1, b,=a,, b,=a,+a,A —A4,—4,-A4,,
b, =a,+4,, by=a,4 —4,(6,+06,)—4,(5,+0,)—4,(6,+7,) (13a)

by = a4 — 4,5,5,

yoxy

— 4,55, - 4,65,

x 7 xy
For the reversed transformation it is suitable to arrange the function F(s) by method of

undefined coefficient to the form of partial fraction F (s) = 217, (s).

i=1
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Therefore it is necessary to determined roots of polynomial of the fraction denominator

5 ,
(13). It is possible to assume the three variation of the equation roots > b, ,.s>" =0
i=0

1) two complex conjugated roots
s =B tio, S34 =P, tio,,

where /S, = |Res1<0 , o, =Ims,)0

, o, =Ims))0 , B, =[Res,(0

and one real 5,(0 — f, = |s5<0|

2) one zero complex conjugated point

s, =p tio, B = |Resl(0 , o, =Ims,)0
and three real roots ~ f3; = |s3<0 , b= |S4<0 , Bs = |S5<0|
3) five real roots s, 2, 53, 54, 85 for 5,(0
then B =|s|, By =ls,|, By =|ss, B =lsy| Bs =|s4|

For these three cases it is necessary to perform reversed.
To 1) In first case it is possible to express the function F (s) in form

F(s)= F()+ Fy(s)+ Fy(s)

then
s’ +a,s’ +a,s+a, Cis+D, C,s+D, C,
= +— +
5 2
b, s STHpStTq ST+, PP
-l
i=0

where  p,=-2B,, B =|Res (0| .,¢,=Q]=0+p’, o, =Ims)0 proi=12
Coefficitents C;, C,, C3, D;, D; are determined from linear equations system
C+C,+C, =0
—C B, -C; B, —C, (2B, +2p,)+ D, + D, =1
CIQ(ZL2 +C,Q0 +C(QF, +Q0, +28,28,)-D,B,—-D, B, =a, (14)
-C,2B9Q:%, +28,Q:)+ D, 2B, B, +D,2B, B, = a,
C,Q. QL +DQL B, +D,Q: B, =a,
After reversed transformation of the function W (s) the expression is derived

t 2 D. —C.5.
W(t)= 4T, (r){z e Ao (ci cosm,(t—1)+ '—C’ﬂ’sm w,(t - r)j +Cye }df (15)
0 i=1 ,;

To 2) in the second case it is possible to express function F(s) in the form
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C,s+D, C, C, C,

- + + +
stps+q s=p, s=B s-p,
where  p, =-2p, B = |Re s,

F(s)=

o, =Ims)0 q, = Qél = 0)12 +ﬂ12

B, :|S3

= |s5(

Coefficients C;, Cs, Cs, D;, D; are determined from linear equations system
C+C,+C,+C, =0
~C(By+ By + B)~Co (2B, + By + B~ C (2B, + By + B)~Co(2B, + By + )+ D, =1
C (5285 + BofBu + BoB) + Co(Q2 + By + 2B,(Bs + BN+ Co(Q2 +2B,(By + )+ BofB) +
+ QL +2B,(By + B+ BoB) - Dy (By + By + B) = a
~CBBS ~Co2BLL A QB+ B C 2B BB+ QLB + B
~C,2BAB QLB+ B)=4, (16)
C.02 B, B, + G By + CLO% . By~ D, Bo B, = a

After reversed transformation of the function W (s) the expression is derived

t -pi(t-1) D1 _CIIHI ; d —p(1-7)
W(t)=A;5[T.(7)| e "7| C cosw, (t —7) +——Lsine, (1 —7) |+ D c,e "7 |dr (17)
0

, i=2

To 3) In third case it is possible to express the function F(5) in form

— 5 .
F(s)=) i , where pro i=1,2,34,5

i=1 S — U,

coefficients Cii=1,...,5

5 5 5 5 5 4 5 5
Zci:()’ ZCiZIszlﬁ ZCiZIBj Zﬂlzaza ZCIZ/B Z/Bl Zﬂk_al
i=1 i=1 =l i=1 =l =yl i=1 =1 I=j+l k=l+l
J#i J#i 1#i J#i 1#i k#i
5 5
2CGII =qa, (18)

After reversed transformation of the function W (s) the expression is derived

t s
W(t)=A5[>Ce” " dr (19)
0i=1
The demanded function W(t) is possible to express in followed form. The function is
depended on the input values (material and geometric), it means the coefficient bi (13a) of the
polynomial of the fraction denominator (13). This coefficient determine values of the zero
point s and polynomial’s points.
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W(t)= ASjTF (1)K (t—7)dr (20)

where function K(?) is in particular cases for S, = |Re 5,0/, @, =Ims;)0
1) K@= Zzle—ﬂff[ci cosmt + D"_TC’ﬂfsin a)itj +C,e ™, (21a)
i=1 i
where C;, D; see (14)
2)  K,(t)y=e™ (Cl cost + DI_TClﬂlsin a)ltj + 24: C.e’, (21b)
I i-2
where C;, D;, C;  for i=2,3,4see (16)
3)  K,()= ic,. e’ i=1,2,3.4.5, (21c)
i=2

where C; see (18)

The demanded vertical displacement function w(x,y;¢) according to (10) is given by
followed expression in solved case

8F SR Jl(ymnc)

o

ab ph Cm=ln=1 Yy, W,

w(x; y;t) = sin(a, x.)sin (B, y,)sin(, x).

.sin(ﬂny)j.TF(t)K(t—r)dr, proi=1,2,3 (22)

If the time course of the external loading F(¢) defined by Heavisid’s function, where unit
jump Tr(¢) = H(t), then time function is

TK(t)sz(r)K(t—r) dr

and its derivation is —7,(¢) for determination of the velocity components of the

displacement for particular cases, the function K(?) is expressed by equations
To 1) for K;(2):

2
2 , D. , D. p. )
T (=2 260, _1(1 ~e " cos wit)"' C;{[ﬁ] +1} —j% e sinwt b+

i=l Q; +ﬂi2 .

1

+§(1—e_ﬂ3’)

3
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OT,, (1)
ot
To 2) for K»(2):

2
Z {Ci cos a)it+£&—ci ﬁJsin a)l.t}rQe_ﬁ” (23a)
i o, o,

1 1

2
T()=— {D (1-e " cosayt)+ c{[ﬁj +1J D A, sma)1t+ZCeﬂ’ (23b)
+ﬂ1 , o) w, a)
Ta® _ e P {C cosa)t+(D1 ﬂl)sma)lt}-ZCe At
ot w, o
To 3) for K3(2):
5 C .
Ti5(1) =Z—’[1—e g ] (23¢)
i=1 ﬂi
aTK3(t i —pit

Resulting equation for vertical displacement w(x,y,;¢) solution for given rectangular
orthotropic 2D plate for Kirchhoff’s model, Rayleygh’s model of plate, viscoelastic plate for

Zener’s model of standard body, simply supported, loaded on the circle surface 7.c’by
continual loading with time dependency corresponding to Heavisid’s jump function, could be
expressed in form

8F0 o~ Jl(j/mnc)
abphc m=1n=1 }/mnl//mn

w(x; y;t) = sin(a,,x,)sin(B,y,) sin(a,,x) sin(fB,y) Ty (1) (24)

velocity of the vertical displacement

8F, 2&J . : . . T, (¢
- ) g (a,x)sin(f,y,)sin(a,x) sin(f5,y) oL
abphcwnm ¥, W Ot

w(x; y;t) =

Equations for solution of the horizontal displacements component

ZaW SZFO -~ 6!m'Jl (]/mnc)

u(x;y;z;t)=— =— sin(a,, x.)sin(f,y,)cos(, x).
8)6 abphc m=1n=1 }/mn mn
sin(B,y)T, (1)
vsyizy = =2 o 8§05 Pl U G (¢ sin (8,7, )sin (@, ).
8y abphc m=1n=1 7mn mn
.cos(B, 1T, (?)

Equations for solution of the velocity components of the horizontal displacements
azw SZFO -~ amJl (ymnc)
5 5t ab 1% he m=1n=1 ymnl//mn

u(x; y;z;t) = sin(a,,x.)sin(f,y)cos(a, x).

872



sin(g,y) 20

ot
2 F 0 o
iyizn =0 W o S §§ DA o g, ysin (8,9, )sin (a0, ).
ayat a b 1% h C m=ln=1 7mnl//mn
o)
.cos —
(8,5) >
: : ... 0T (1) . .
Where function T(?) and its derivation ——— are given for particular cases K;, K>, K3 by

ot
expression (23)

3. Conclusion

Equations for solution of stress components are determined substitution of equation (22), or
for Tr(t) = H(t) and equation (24) into the expression (5).

Evaluation derived expression and numerical solution mentioned problem by FEM in
system MSC and Matlab is provided on UT AV CR in Plzefi. The solution results both of
these methods, it means approximated analytical and FEM, included theirs comparison, will
be proposed during contribution presentation at conference.
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