‘ National Conference with International Participation

m ENGINEERING MECHANICS 2008

2008 Svratka, Czech Republic, May 12 — 15, 2008

THE MOTION SIMULATION OF THE RAILWAY VEHICLE BOGIE
EMPHATICALLY OF CREEP FORCE EFFECTS

J. Siegl, J. Svigler”

Summary: The paper deals with the motion modelling of a material bogie of a
railway vehicle. The aim of this contribution is the bogie motion analysis with
consideration of creep force effects. The contact between the wheel sets and the
railway is solved as a contact of two conical surfaces with two lines. The bogie
suspension system is modeled by nonlinear suspension elements which are con-
nected to the railway and the vehicle case. The railway and vehicle case is con-
sidered with no degrees of freedom. The comparison of the bogie motion without
and with secondary suspension in the vehicle case is made. The solution is made
for motion on the straight railway and constant forward velocity. The mathemati-
cal model of the railway vehicle bogie is created and the numerical solution of
this mathematical model is made by own developed software which allows to
simulate a bogie motion in dependence on initial values.

1. Introduction

The paper deals with the motion modelling of a makédogie of a railway vehicle. The aim
of this contribution is the bogie motion analysighaconsideration of creep force effects. The
comparison of the free bogie motion with the bagietion suspended in the vehicle case is
made. The solution is made for motion on the dittaigilway and constant forward velocity.
The railway bogie is considered as perfectly rigmtly which is suspended by immaterial
suspension elements to the infinitely stiffnesbvay and vehicle case. The railway and vehi-
cle case is considered with no degrees of freeddra.suspension between the vehicle case
and the bogie is modeled by spring and damper eiesm&he bogie linkage with the railway
is realized by creep elements. The bogie is consibeith two degrees of freedom which al-
low the lateral motion and rotation arround theticat axis. For the free bogie motion on the
straight railway the link force effects between Hugie and the vehicle case are considered as
zero. This work is based on the book Garg & Dukkif084) and it follows up with the pa-
pers Svigler & Siegl (2007) and Siegl J. & Svigler(2006). The railway vehicle with de-
signed velocity 200kmh™] is considered. The contact between the wheelaseighe railway

is solved as the contact of two conical surfaces wivo lines. The stiffness of rail with the
subsoil is considered as infinite. The publicatialadora (2007), Morg&ik & Zelenka
(2007) and Byrtus, Zeman, Hlav&007) dealing with the modelling and dynamicadlgsis

Ing. Jaroslav Siegl: Faculty of Applied SciencBgpartment of Mechanics, University of West Bohemia
Univerzitni 22; 301 00 Plze tel.: +420 377 632 381; e-mail: jsiegl@kme.zeu.c
” Doc. Ing. Jaromir Svigler, CSc.: Faculty of ApdliSciences, Department of Mechanics, UniversitWeft
Bohemia; Univerzitni 22; 301 0 Pigetel.: +420 377 632 304; e-mail: svigler@kme.zeu.

831



of a railway vehicle was studied.

2.  Assupmtions

Vehicle suspension systems should by accuratelyeteddy equivalent suspension elements.
In most cases for passanger and locomotive trigtkspension characteristics can be repre-
sented by linear suspension elements. On the btrad, for most freight trucks, suspension
characteristics are quite nonlinear and therefoeg ire required to be modeled by nonlinear
elements. In developing the equations of motiortlierrailway vehicle model, the following
assumptions are made. The vehicle frame is asstortael rigid and its stiffness is lumped in
the suspension elements. The wheel sets are assomrad freely in the journal bearings
without bearing friction, all displacements in sespion elements are considered to be small,
nonlinearities due to suspension stops, wheel-8asantact, dry friction in suspension ele-
ments and adhesion limits between wheel and raihaglected. The simpified wheel and ralil
contact geometry and linear creep theory is udes gyroscope moments of wheel sets are
neglected, there is no wheel lift and the wheedsadwvays in contact with the rails.

CASE = GASEO

—

Fig. 1: General view on the bogie in default pasit+ coordinate systems.

3.  Used mathematical style

A generalized coordinate vector of a coordinateesyd expressed in a coordinate systam
has the form*q, =[anT acﬂf OR® where®r,, *¢@,0R?® is a linear and an angular coordi-
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nate, the’r, =[*¥’ 1], “@, =[*®; 0]OR* is a linear and an angular extended coordi-
nate. The left upper index means generaly a nanee afordinate system in which a given
magnitude is expressed. A transformation matfROR*“ determines a coordinate systbm
expressed in a coordinate systamthe T, OR>? indicates a rotary transformation matrix.

The work uses right-handed Cartesian coordinatesyswhose the first base vectors on all
figures are marked by black dots at the vertex wd@or conus.

4.  Input parameters

It is considered a biaxial bogie of an electricaimotive that does not generates neither trac-
tive nor braking force effects. A revolving pinpart of secondary springs and dampers have
to be considered as a component of a locomotive. CHse weight of these parts is in total
523 kg]. The mass inertia moments are expressed to tlss oemters always. For simplifica-
tion the generalized coordinate of the bogie masser from the bogie equilibrium or default

position ®°q, (t) with two degrees of freedom is marked as

qat)=[0 y 0 0 0 ¢]. (1)

Hence the longitudinal motion performs the railwthe vertical, roll and pitch motion of the
bogie is not considered. Thell, pitch andyaw angles constitute rotation around tkta base
vector of the bogie coordinate syst&in the equilibrium positioR*e, .

4.1. Wheel-Rail common parameters

The half of the rail gauge is= 750 jmm|, the half vertex angle of the the cone wheel is
A=atan(1/20 and the coefficient of static dry friction betwette rail and the wheel is con-
sideredirw = 0,4 [].

4.2. Railway

The bogie motion is assumed on the the first dttaigilway segment only which is described
in the fixed coordinate systeRW, Fig. 1. This system is placed in the global cowatk sys-
tem G by the coordinatéq,, =[100 0 300 0 0 P . The moveable systeRWa is de-

fined by the coordinat€”qy,, =[u,, 0 0 0 0 ' where the parameter,, 0(0, L) is

the coordinate on the railway segment, lthie the railway length andxy = vt wherev is for-
ward velocity and is the time coordinate. ThRWa, active coordinate system, actualy de-
fines or draws the railway curve.

4.2.1. Rall

The rail has material properties Young's rigiditypdulus at pullEg = 210 000 MPa] and
Poisson’s ratiog = 0,25 [-], geometrical parameters are the pradanywrmal radiuses of cur-
vatures at the default contact poRf, =[« 300" [mm] where the first radius of curvature

Rr1 Is expressed in the longitudinal and the secoredRan in the lateral direction. The coor-
dinates matrix of the railR1j at each railway segment is, Fig. 1,

01 0 1 040
RWaqu:[RWaquj]zdiag([O | 041 0 Q){ }

. Thej-th rail is conside-
0 -1 0-1200
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red as a curve, which is given by following vedianction in global coordinate systeG

Mo (U ) = S TRYRET (U, )™ T[0 0 0 7. )

G

4.3. Parameters of the whole bogie

The bogie contain two wheel sets which have twaekegof freedom, vertical and roll free-
dom, however these wheelsets are rigidly connetcig¢tle bogie in every point of time. The
whole bogie is therefore considered as a rigid bdtheg bogie weight i = 15 760 kg], the
mass inertia tensor in the bogie coordinate sy&esn

16 062,721 - 207,752 - 1,318

®l, =| —207,752 26 375,833 - 3,474 [kgm?] and the coordinate of the bogie mass cen-
-1,318 -3,474 24 232,248

ter in the equilibrium, default position, &*q,,=[0 0 727 0 0 ¢ [mml. The coordi-
nates matrix of theth wheel set in the equilibrium position in thegcoordinate systeid
1250 0 -102 0 O

IS POy =| Plyso | =
o = * s {—1 250 0 -102 0 O
on thei-th wheel set at thieth wheel set coordinate systai® is

. 0Ol 0 -05r 0 0O
WS —_| ws — 1
% =[ qVW]_[o - 0 057 7« (J'

T
73 , the coordinates matrix of thjeh wheel

4.3.1. Wheel

The wheel has material properties Young’s rigiditgdulus at pulEy = 210 000 MPa] and
Poisson’s ratioyy = 0,25 [-], the geometrical parameters, princip@imal radiuses of curva-
tures at the default contact point, are approxitlyatensidered

R, =[1250/2 100 00p [mm] where the first radius of curvatuRa is in the longitudinal

and the second orgy, in the lateral direction. The coordinates matrixhe wheels\j on
thei-th wheel seWS is, Fig. 1,

01 0 -057 0 Q

WS — | ws — !
% =" | [o -1 0 057 & J
nical surface, which is described by following \adunction in the actual coordinate system

. The wheel rolling surface is considered as a co-

(Ry, —u tan) cosu,
(Ry; —u; tanA) sinu,
ul
1

3)

rW (ul’ UZ) =

whereu,, U, are surface parameters. Tjhidn wheel surface of thieth wheel set in the global
coordinate system is given

Gr\Mj (u11 Uz) — G,RWTR\N,R\NaT(uRW) R\Na,BOTBO,BT Bwso-l-wsows-r(wsm qWS)WSWjTWJI'W (ul’ UZ)’ (4)

tangential vectors at each wheel point
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—tanA cosl, ~(Ry; —u, tanA) siru,

2°r, | —tanA sinu, 0°ry _| (Ry:—u,tanA) cosu
th\Mj (ul' u2) = au1 | — 1 , Gtz\Mj (ul' u2) = auz | — 1 1 0 2 (5)
0 0
and the normal vector
Sy (U, Uy) =ty x Oty (6)

4.3.2. Link elements to the case — secondary suspension
The whole link elements are considered as immateria

Springs

There are condsidered four linear spiral springesghigh in free state is 63|, diameter
is 240 jnm), diameter of the wire is 48], axial stiffness is 538Nmm™], radial stiffness
for static load, in accordance with Ponomarev, & INmm™] and number of effective
threads is 7. The coordinates matrix of the secgmslarings coordinate syster8g is

1 -1 -1 1
1 1 -1 -1
Meqq =[ ™ qg |=diag([170 1370 617 0] ) L1 1 4 03
0, 0, 0, O,
and the matrix of the stiffness vectors is
1111
Skg =] “kg, |=diag([266 266 53§ 1 1 1 L T T
s~ s | T dag poed .
1111

Dampers

The whole dampers of the company KONI are modetelihaar except the longitudinal. The
damping forcngsJ0 of this longitudinal damper oraw damper is given as a discrete func-
tion that is interpolated to the continuous funetig,,, by thePiecewise cubic Hermite in-

terpolating Polynomial, Fig. 2. This interpolation method has no oversb@md less oscilla-
tion if the data are not smooth.
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Fig. 2: Functions of longitudinal damper for secarydsuspension — continuous damping for-
ce Fusio = Fosyo (X), discrete damping fordg , = Fug,, (X) (white points) and damping
Bos.o = Posyo (X) =0Fps,, /0% (blue curve).

The coordinates matrix of secondary dampers actu@ldinate systemi3g is
RWa — | Rwa _
qu _I: qu :' -

590 | 405 | -400 | -590 ! -405 | 400
| | | | |
1 060 11370- 12 1460 ! - 1060 ! -( 1370 )12- 146
| | | | |
| | | | |
885- 395tarE 8lj | 600 ! 661 | 885 395(an—7§] ' 600 | 661
180/ | | 180/ |
et | E— S R T T T T I A -
- _Tig oo 0o | ~-8— | 0 0
2 180 ! ! 2 180 ! !
| | | | |
0 0 1-Z4g 0 o 2
! ' 2 180 ! 12 180
0 I 0o 0 | 0 i 0
| | | | |
i lateral | veticd | longitudinal | lateral | vertical | longitudinal
io{g, ..., 8.

and the matrix of damping vectors is
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0 0 o | o0 0 0 N
= o 0 o I o0 0 0 [ES}
|
63 000 100 000, (®F, ) 63000 100 00, (*, )
lateral vertical —— lateral vertical —~—
longitudinal | longitudinal
where
BO,B=m= B . —
BO BOgL ) — d( T rDs) — BOBmmB BOB==B.  _ BOnB BO’BTR BOFB Bng —
rD( qB)——— Tr, +"7Tr, = =
(7)

_|:BOQB Bo,B-I-R BFDS + BOFB
0

is the velocity vector expressed in the bogie douim positionBO of thei-th damper and
the ®°Q, is the bogie angular velocity in the matrix form.

Fig. 3: General view on the bogie in a general tpmsi
4.4. Case of locomotive

To the case of vehicle is added mass of the rgterand upper part of the secondary suspen-
sion. The case weight ilscass = 55 526 kg], the mass inertia tensor is
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) =diag([104 772 1037 305 1037 92 kgn? | and the coordinate of the case mass

center in the equilibrium position &g, =[-3200 0 1713 0 0 }5 The case is con-
sidered with no degree of freedom, heft¥q_, =0, .

5. Analysis

The bogie suspension system is modelednaylinear suspension elements. The bogie is
modeled as a discrete mechanical system, thus mditmm of perfectly rigid bodies which
are linked by immaterial linkages.

5.1. Bogie constrains

The wheel sets, which are rigidly connected tolibgie, are constrained by the rails which
take away three degrees of freedom. The wheelit#t fpeedom is not considered. Théh
wheel set coordinate is so

WSOquS=[0 0 \NSOi% wsomvS 0 O:IT' (8)

The wheel set — rails contact is solved simplbi@snus on two parallel lines. The conditions
of thei-th wheel set — rails contact are following

G G _
M= K= 041

°tr, °ny,; =0,
Mo ™ GrWiz =0,
GtTRanWiz =0

where °t, is tangential vector of th¢th rail curve. These eight non-linear equations

(9)

G

F(x) = 0 solves the unknow vector

i i T
xz[uw\u Upy 1 Ua/v1¥usz Uy > uwzsto% wso%] OR®. (10)

The Fig. 3 is generated with application of thiste@t detection method.

6. Motion equation

The condition of the bogie dynamic equilibrium metbogie coordinate systeBis in the
vector form

"Q, (4)+°Q, (a)+°Qs(q)+°Q.(a.9) + *Q,(q)+°Q:(a)=0,  (11)

whereQj is an inertia force effect of the bog@y is a dissipative force effect of damper ele-
ments,Qs is a force effect of spring elemen@ is a force effect of creep elements &,

QR is the gravity action and reactive force effedcte Toordinate of thieth linkage element in
the bogie coordinate systenis

RWari — RWa,BOT(RWanO) Bol.i — Bol.i — B'.i :inV(RWa,BOT) RWap (12)
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6.1. Inertia force effect
The inertia force effect is expressed
.. E O
5Q, =-M4q, m=|"5 (13)
0 L
whereMOR®® is themass matrix of the bogie andEOR*® is the identity matrix.

6.2. Damper force effect
The force effect of the damper elements is exptesse

B B BT
B Dg Dg Dg

B B B B BpT
RDS BDS] RDS BDS RDS

*Q,=-B(4)4. B=B(q) =z[ (14)

i=1

whereBOR®® is thedamping matrix of the bogie,’R,,_ is the position vector in matrix form
of thei-th secondary damper in the bogie coordinate systed?*B, [R>® is the transfor-
mated damping matrix of theh secondary damper which is given by

°B,, = "> T ("o, ) *B,, "> T (P, ) (15)

where the coordinate systeBis parallel with the coordinate syst@nThe damping matrix
has the forn=B,, =diag (b, ).

6.3. Spring force effect

The force effect of the spring elements is exprsse

B
K

B BpT
2 S ; Ks Ry
B
=| R

B
Q, =Kq, K= B B B BT
K%] Rs Ks R

(16)
S

where KOR®® is thestiffness matrix of the bogie,’Ry, is the position vector in matrix form

3x3

of thei-th secondary spring in the bogie coordinate sydtesnd °K, OR>* is the transfor-

mated damping matrix of theth secondary spring which is given by
Ky, = T (P ) K P T (P, ). (17)

The i-th spring actual coordinate syste®g lies in theprincipal central axes of easticity
(PCAE). The spring is sometimes called asdlastic insulator. The stiffness matrix has the

form K =diag(ksa ) .

6.4. Gravity force effects

The action force effect on the bogie is causedhkygtravitational field only with acceleration
g and therefore

"Q,=[0 0 -(m,+0,5n,¢)g 0 0 G . (18)

On thei-th wheel set it affects
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“Q,=[0 0 -(m+0,5m,¢)g/2 0 0 Q. (19)

This action force effect causes the reactive faftects at the wheel-rail contacts of tih
wheel set for the static equilibrium. These reacforce effects are given by the condition of
the static equilibrium

V\BQ z Cl] CIJT % 703)(3
WSR Cij, Cij TR i ij, C|]-|-R

° QR} =0 (20)

where the reactive force at the cont@ithas the form™ Q, —[F Fr., Frs 0 O O]T.

The Eg. 20 is actually a vector linear equatl®ix) =0 whereF is a vector functionx is a
vector of solution an@ is the zero vector. The reactive forces at theamiriangential plane,
Fri andFry, secure the static state, but a motion on thisepla possible. Therefore the third
reactive forcd-gs only is applicated to the motion equation

“@,=[0 0 F,, 0 0 §'. (21)

This reactive force effect’ Q,, is equivalently replaced in the bogie coordingt&emB and
the result reactive force effect caused by theitatwnal field is following

s 2 Cij, Cu-r { 0
B l 3x3
Q =
R ZZ{[ c” Cij, CUTR § ClJ,Cu-I-R

i=1 j=1

“ QR} (22)

where the coordinate syste@ij is parallel with the bogie coordinate system. Taree °Q,,
is sometimes called tHateral gravitational stiffness and the momentQ,, theyaw gravitati-

onal stiffness. The force®F, in the Eq. 21 is called thehed force.

6.5. Creep force effects

The creep force effect at the contact coordinastesyCij of thei-th wheel set and thieth
wheel, whose the third base vector is always pelipalar to the contact tangential plane, is
described by the Kalker’s linear theory of rolliogntact, Kalker (1967). In the matrix form it
IS possible to express as

“Q, =-C(q)g(a.q) (23)

whereC is a square antisymetrical matrix of the Kalkdirear functions ang is the cree-
pages vector of a wheel and a rail. This equatasfarm

11 [@ec, 0o 00 o0 0 Iy
3
T (ab)’'GC,, 0 0 0 (ab)2GC, || ¥
) 0 0
CI]QC_ 0 - _ 0 0O 0 0 (24)
00 0
0 0 0 0
M 2 Ve
| —sym (ab)”GC,q |176-
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whereTy is longitudinal creep forcd,, is lateral creep force arM, is spin-creep moment. Li-
near creep forcé, is independent of, andys, whereasly is independent of.. This Kalker’s
theory uses theombined elastic constants v andG for the case of two different rolling bodies
wherev is combined Poisson’s ratio alis combined shear modulus of rigidity of wheel
and rail. The Kalker’s creep functid&; = Cj;(v, a/b) depends on the Poisson’s ratiand the
ratio a/b of the semiaxes of the contact elliptical surfaogy. The function€,s andCes are
marked in the publication Garg, V. K. & Dukkipa, V. (1984) asC,3 andCss. These Kal-
ker's continuous creep functioly are obtained from discrete creep function by cspime
interpolation method, Siegl J. & Svigler J. (2006).

6.5.1. Creepages determination

Creepage occurs in all three directions in whidatiee motion can occur. This creepage or
relative slip at the contact poi@ij of thei-th wheel set and theth wheel in thek-th direc-
tion is defined as a quotient of the slide veloaityhis direction and the forward velociyof

a vehicle generaly, hence

" \..
Gy = Il\jlk k0{1,2, . (25)

There are obtained the creepage in the longituglinghe lateral, and the normals directi-
on, Siegl J. & Svigler J. (2006). The equationgdalinson and Vermeulen, Johnson K. L. &
Vermeulen P. J. (1964), then modify the tangemtiades because of creep force linearization,

when the tangential force size can exceeds thiéoftiorce fo, |'F|, which is unreal.

6.5.2. Equivalent replacement of creep force effects
The creep force effects are equivalently replacethé bogie coordinate systednas follow-

ing
Gij, Cij |
T. 0,
— i
BR Ci.Cig | Gi,Ci
R T: | T:

2
BQC = Z —
=)

2
izl

“ Qc} (26)
where the coordinate syste@ij is parallel with the bogie coordinate system.

7. Numerical simulation

On the following figures the functions at the lefil are ploted by green color, at the right one
by blue and the first (front) wheel set by contingpthe second (back) one by dot line type.
The numerical simulations are made for initial ey = 0,005 ], y,= 0 [ms?, wo =0

[rad], ¢, =0 [rads™.

7.1. Motion of the free bogie

On the following figures are visualized some fuocs of the biaxial bogie motion without
secondary suspension, iKk=0 andB =0.
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Fig. 4: Functiony = y(t) describing the bogie lateral motion for seledtaavard velocities.

8000
6000

4000—

0.5 1 15 2 25 3 35 4 4.5 55 6 6.5 7 75 8 85 9 9.5 10

5
1[s]
400~

300

4/ \

-200—

B7 [N]

2300 | | | | | | 1 | | | | 1 | | | | | 1 | |
0 0.5 1 15 2 25 3 35 4 4.5 S 55 6 6.5 7 75 8 85 9 9.5 10
1[s]

Fig. 5: Lateral creep forces and result creep faftecting the bogie motion for the forward
velocity 50 kmh™].

7.2. Motion of the suspended bogie in the vehicle case

On the following figures are visualized some fuoes of the biaxial bogie motion with sec-
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ondary suspension. On the Fig. 8 up to the Figthglcreepages and the creep force effects
are ploted for the forward velocity= 50 kmh™].
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Fig. 6: Functiony = y(t) describing the bogie lateral motion for seledtaavard velocities.
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Fig. 7: Functionsy = y(y) or thephase trajectories for selected forward velocitiasand mo-
tion timet = 60 [g].
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Fig. 11: Normal creep moments.

8. Results and discussion

The motion numerical solution of the loaded bogyette half weight of the vehicle case
without and with secondary suspension was madevdoious forward velocities on the
straight railway. The lateral motion of the freexhal bogie, i.e. without secondary suspen-
sion, moves steady approximately up to the forwaidcityv = 10 kmh™], Fig. 4. For higher
velocity the bogie’s motion is unsteady. The bogith the secondary suspension is steady
for every forward velocity. The lateral motion dfet bogie mass center with the secondary

suspension is presented as a funcyieny(t) and y = y(y(t)) which is called th@hase tra-
jectory, Fig. 6, 7.

9. Conclusion

The mathematical model of the railway vehicle bogaes created and the numerical solution
of this mathematical model was made by own develgudtware which allows to simulate a

bogie motion in dependence on initial values. Tartnwork will be oriented to the creation

of a mathematical model of a complete railway viehvath two doubly suspended bogies and
eventually with consideration of a finite stiffnesfsa rail with a subsaoil.
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