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Summary: The paper deals with transmission conditions imposed on
the interface plane separating two halfspaces occupied by the acous-
tic medium. The conditions are obtained as the two-scale homoge-
nization limit of the standard acoustic problem imposed in the layer
with the perforated periodic structure embedded inside. The limit
model involving some homogenized coefficients governs the interface
discontinuity of the acoustic pressure associated with the two halfs-
paces and the magnitude of the fictitious transversal acoustic velocity.
By numerical examples we illustrate this novel approach of modeling
the acoustic impedance of perforated interfaces.

1. Introduction

The purpose of the paper is to demonstrate the homogenization approach applied to computa-
tional modelling of the acoustic transmission through perforated planar structure. We consider
the acoustic medium occupying domain Ω which is subdivided by perforated plane Γ0 in two
disjoint subdomains Ω+ and Ω−, so that Ω = Ω+ ∪Ω− ∪ Γ0, see Fig. 4. In the differential form
the problem for unknown acoustic pressures p+, p− reads as follows:

c2∇2p+ + ω2p+ = 0 in Ω+,

c2∇2p− + ω2p− = 0 in Ω−,

+ boundary conditions on ∂Ω.

(1)

In a case of no convection flow the usual transmission conditions are given by

∂p+

∂n+
= −i

ωρ

Z
(p+ − p−),

∂p−

∂n−
= −i

ωρ

Z
(p− − p+), (2)

where n+ and n− are the outward unit normals to Ω+ and Ω−, respectively, ω is the frequency,
ρ is the density and Z is the transmission impedance; this complex number is characterized by
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features of the actual perforation considered and is determined using experiments in the acoustic
laboratories, see e.g. Kirby & Cummingset (1998).

The aim of our approach is to replace the transmission condition (2) by the two-scale ho-
mogenization limit of the standard acoustic problem and obtain some homogenized coefficients
characterizing the perforated structure.

2. Problem formulation

By indices ε we denote dependence of variables on scale parameter ε > 0; similar convention
is adhered in the explicit reference to the layer thickness δ > 0. By the Greek indices we refer
to the coordinate index 1 or 2, so that (xα, x3) ∈ IR3.

2.1. Geometry

Let Ωδ ⊂ IR3 be an open domain shaped as a layer bounded by ∂Ωδ which is split as follows

∂Ωδ = Γ+
δ ∪ Γ−δ ∪ ∂Ω∞δ , (3)

where δ > 0 is the layer thickness, see Fig. 1. The acoustic medium occupies domain Ωδ \ Sε
δ ,

where Sε
δ is the solid obstacle which in a simple layout has a form of the periodically perforated

sheet.
For homogenization technique, it is important to have a fixed domain, therefore the dilatation

is considered, cf. Cioranescu & Saint Jean Paulin (1999); let Γ0 be the plane spanned by
coordinates 1, 2 and containing the origin. Further let Γ+

δ and Γ−δ be equidistant to Γ0 with the
distance δ/2 Therefore, x3 ∈]− δ/2, δ/2[ and we introduce the rescaling x3 = zδ.

Figure 1: The layer Ωδ of the acoustic medium with periodic “solid perforations” Sε
δ .

2.2. Boundary value problem in the transmission layer

The problem of acoustics is defined in Ωε
δ. We assume a monochrome stationary incident wave

with frequency ω and no convection velocity of the medium, so that

c2∇2pε δ + ω2pε δ = 0 in Ωε
δ,

c2
∂pε δ

∂nδ
= −iωgε δ± on Γ±δ ,

∂pε δ

∂nδ
= 0 on ∂Ω∞δ ∪ ∂Sε

δ ,

(4)
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where c = ω/k is the speed of sound propagation, gε δ±k2 is the interface normal acoustic
velocity; by nδ we denote the normal vector outward to Ωδ.

3. Homogenization

For passing to the limit ε→ 0 we consider a proportional scaling between the period length and
the thickness, so that δ = κε, for a fixed κ > 0. Further, we need a convenient prepositions on
the problem data involved in (4). Note that gε δ± is defined on Γ0, which is equidistant to Γ±;
we assume

gε δ+ ⇀ g0+, gε δ− ⇀ g0−,
1

δ

(
gε δ+ + gε δ−)⇀ 0,

weakly in L2(Γ0). It can be shown from the limit equation that

g0± := g0+ = −g0−. (5)

3.1. Local microscopic problems

The homogenized coefficients are introduced using so called corrector functions πβ, ξ± ∈
H1

#(1,2)(Y )/IR, β = 1, 2 computed for the reference periodic cell Y =]0, 1[2×]− 1/2,+1/2[⊂
IR3 which is perforated by the solid (rigid) obstacle T , so that the acoustic medium occupies
domain Y ∗ = Y \T . We refer to the upper and lower boundaries of Y by I+

y = {y ∈ ∂Y : z =
1/2} and I−y = {y ∈ ∂Y : z = −1/2}.

The local microscopic problems can be formulated as: Find πβ and ξ± such that∫
Y ∗

[
∂y

αξ
± ∂y

αq +
1

κ2
∂zξ

±∂zq

]
+
|Y |
c2κ

(∫
I+
y

q −
∫

I−y

q

)
= 0, ∀q ∈ H1

#(1,2)(Y )/IR, (6)

∫
Y ∗
∂y

α(yβ + πβ) ∂y
αq +

1

κ2

∫
Y ∗
∂zπ

β∂zq = 0, ∀q ∈ H1
#(1,2)(Y )/IR, β = 1, 2. (7)

3.2. Macroscopic problem in transmission layer

Homogenized transmission behaviour is expressed in terms of interface mean acoustic pressure
p0 ∈ H1(Γ0), and fictitious acoustic velocity g0±L2(Γ0) which satisfy the interface problem (to
hold for all q ∈ H1(Γ0) and ψ ∈ L2(Γ0))∫

Γ0

Aαβ∂
x
βp

0∂x
αq −

|Y ∗|
|Y |

ω2

∫
Γ0

p0q = −iω

∫
Γ0

Bα∂
x
αq g

0±,∫
Γ0

(p+ − p−)ψ −
∫

Γ0

Dβ∂
x
βp

0ψ = iω

∫
Γ0

F±g0±ψ,

(8)
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where the homogenized equations are expressed in terms of the corrector functions πβ and ξ±:

Aαβ =
c2

|Y |

∫
Y ∗
∂y

γ(yβ + πβ) ∂y
γ(yα + πα) +

c2

|Y |κ2

∫
Y ∗
∂zπ

β∂zπ
α, (9)

Bα =
c2

|Y |

∫
Y ∗
∂y

αξ
±, (10)

Dα =
1

|Iy|

(∫
I+
y

πα −
∫

I−y

πα

)
=

κ
|Iy|

Bα, (11)

F± =
1

|Iy|

(∫
I+
y

ξ± −
∫

I−y

ξ±

)
. (12)

Macroscopic acoustic behaviour in Ω is described by acoustic pressures p+, p− which satisfy
equations (1) and by the transmission conditions on interface Γ0 which are defined in terms of
p0 and g0± as

c2
∂p+

∂n+
= iωg0± on Γ0,

c2
∂p−

∂n−
= −iωg0± on Γ0.

(13)

Terms p0 and g0± satisfy interface problem (8). The transmission conditions (13) result from
the homogenization limit of (4) and replace conditions (2).

4. Numerical examples

Examples introduced in this section were computed using our code based on Matlab system.
We use Q1 finite element approximation for acoustic pressure in Ω and P1 line elements on Γ0

to approximate p0 and g0±.

4.1. Homogenized coefficients for various perforations

For illustration, in Figs. 2 and 3 the local corrector functions ξ± (left) and π (right) are displayed
for 2D and 3D examples of different shapes of the perforations.

4.2. Modelling acoustic waveguide – influence of perforation type

The following numerical example shows the global response presented by the acoustic pressure
at the macroscopic scale and illustrate how this response is sensitive to the type of perfora-
tion. The geometry of the acoustic waveguide is depicted in Fig. 4 and the following boundary
conditions are applied:

iωρv + c
∂p

∂n
= 0 on Γin,

iωp+ c
∂p

∂n
= 0 on Γout.

(14)
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The first condition prescribes the velocity of the incident wave on the input (v = 1 m/s) and the
second one ensures the anechoic output. The acoustic medium has the density ρ = 1.55 kg/m3

and the speed of sound propagation is c = 343 m/s. In Fig. 5 we show the modulus of acoustic
pressure in the waveguide for perforation types #1, #2 and #3.

5. Conclusion

We presented the transmission conditions, see Rohan & Lukeš (2007), involving homogenized
parameters (9)-(12) which reflect specific geometry of the periodic perforation. In 2D and 3D
numerical examples we demonstrated the sensitivity of the acoustic transmission coefficients
on the shape of perforation.

The presented model is motivated by simulation of muffler type structures, see e.g. Bonnet-
Bendhia et al. (2004, 2005).
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Mic. #1
A = 1.1546 · 105 (m/s)2, B = 0 m, F = 1.3913 · 10−5 s2

Mic. #2
A = 1.7035 · 105 (m/s)2, B = −0.2509 m, F = 1.3237 · 10−5 s2

Mic. #3
A = 2.1855 · 105 (m/s)2, B = −0.8974 m, F = 4.2653 · 10−5 s2

Figure 2: Distribution of ξ± (left), π (right) in Y ∗ and homogenized coefficients for three shapes
of 2D perforations.
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Mic. #4

A =

[
1.19 0.0
0.0 1.2

]
· 105 (m/s)2, B =

[
0.0 0.0

]
m, F = 1.32 · 10−5 s2

Mic. #5

A =

[
1.19 0.0
0.0 1.19

]
· 105 (m/s)2, B =

[
0.0 0.0

]
m, F = 1.42 · 10−5 s2

Mic. #6

A =

[
1.44 −0.01
−0.01 1.80

]
· 105 (m/s)2, B =

[
0.303− 0.011

]
m, F = 2.56 · 10−5 s2

Figure 3: Distribution of ξ± (left), πα (right) in Y ∗ and homogenized coefficients for three
shapes of 3D perforations.
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Figure 4: Macroscopic domain Ω; L = 1 m, R = 0.3 m.

Mic. #1; ω = 5 · c Mic. #2; ω = 5 · c

Mic. #3; ω = 5 · c Mic. #3; ω = 1 · c

Figure 5: Modulus of the acoustic pressure in Ω .
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