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Summary: Pneumatic long line is a research object with complex parameters, 
described by a partial differential equation. Complexity of problems connected 
with an analysis of this type of objects leads to seeking different approximate 
ways of analyses. A partial differential equation can also be approximated by: 
system of difference equations, system of ordinary differential equations, and 
ordinary differential equation. This last procedure must be used of carefully, 
because we knowingly accept inaccuracy of the obtained model. Inaccuracy 
evaluation criterion of the simplified model is experimental comparison of 
responses obtained during the object testing with its model for a given case. 

1. Introduction 
During developing the digital-analogue converter the converter dynamic properties were 
tested. In the first phase of tests attention was focused on dynamics of fluid elements which 
were produced in Poland on a semi-industrial scale three input elements of NOR type. 
Although the logical system was made up of forty elements, a detailed analysis revealed that 
about 98% of the air present in the built prototype of the device did not occur in working 
elements (NOR), but it appeared in connecting conduits and valve chambers of digital-
analogue converter. 

2. Approximation of partial differential equation by set of difference equations 

Let  be a function of two or more variables which meets partial differential equation u
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Expanding (1) into Taylor series, for example for variable x  in the vicinity of ix  we obtain 
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Summing sides of equations (2) and (3) and after neglecting fourth and higher power of x∆  
we obtain 
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= + ∆ − + −⎡⎜ ⎟ ⎣∂ ∆⎝ ⎠

)∆ ⎤⎦  (4) 

It is the approximate value of second derivative of function  in point u ix . Subtracting sides 
of equations (2) and (3) and after neglecting third and higher power of x∆  we obtain first 
derivative in the form 

 ( ) (1

i

i i
x

u u x x u x x
x x
∂⎛ ⎞ = + ∆ − −∆ )⎡ ⎤⎜ ⎟ ⎣ ⎦∂ ∆⎝ ⎠

 (5) 

Independent variable x  takes discrete values ( )1, 2, ,ix i x i N= ∆ = K . For  points we obtain 
 equations. As we can see from (2) and (3) the approximate value of first or second 

derivative of function u  in point 

N
N

ix  is determined by function values in three points 1,ix −  ,ix  

1ix + . This fact determines the shape of matrix (8); it is three diagonal. 

From equations (2) and (3) we can obtain first approximation of function by taking into 
consideration only two initial components of the right side; so 
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Obviously, the obtained approximations are one order worse. After substitution of the above 
mentioned approximation, i.e. for second derivative (4) and for first derivative (5), (6) or (7) 
into equation (1) we obtain set of   algebraic equations, which can be presented in the form  
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 (8) 

or in shorter form dependence 

 =Au d  (9) 

Vector  is known in time d j , whereas u  is vector which is looked for in time 1j + . 
Matrix  is a given matrix with constant entries, For A 0j = ,  denotes initial conditions. d

After approximation of the left side by equation (4) and the right one by equation (6) we 
obtain a series of difference equations presented by formula: 
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 ( ) ( ), 1 1, 1, ,1 2i j i j j j i ju a u u a u+ + −= + + −  (10) 

for  1, 2, ,i N= K

where 
( )2

ta
x
∆

=
∆

 

Equation (10) is unstable for . Using approximations (4) and (7) we obtain 0.5a >

 ( ) ( ), 1 1, 1 1, 1 , 11 2i j i j i j i ju a u u a u+ + + − += − + + + +

)

 (11) 

The approximation is unconditionally stable. 

In order to obtain a better approximation – with second order error for both variables – we 
can use non-overt method developed by Crank and Nicolson according to which  is 
expended in point , and because the function value in this point is not known we 

take the average arithmetic value of function u , expanded according to (4) in points 

/u t∂ ∂
( , 1/ 2i j +

( ),i j  

and ( , thus ), 1i j +
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So, finally 

 ( ) ( )1, 1 , 1 1, 1 1, , 1,2 2 2 2i j i j i j i j i j i jau a u au au a u au− + + + + − +− + + − = + − −  (13) 

There is a possibility to create very many difference schemes which can be found e.g. in 
references - Collatz L., (1960), Demidowicz B.P., Maron L.A., Szuwałowa E.Z., (1965). 

The procedure used for solving a set of equations regardless of  used approximation, 
involves the following steps: 

— for the first time period 1j = , =1Au d ; 

— for the second time period 2j = , 2 = 1Au u  

The value in time period 1j +  is calculated on the basis known values in time j . This 
statement is also right when   represents space dimension, not time. 

Respecting (10), we can write e.g. parabolic dependence 
2

2 ,P w Pb
x D t

∂ ∂
=

∂ ∂
   in the 

form 

2P p=

 (, 1 , 1, , 1,2i j i j i j i j i j
aP P P P P
γ+ −= + − + )+  (14) 

where: wb
D

γ = ,  – pressure squared in  point, in ,i jP -thi -thj  time period. 
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In turn 
ˆ ˆ ˆ

,
ˆ 2

Zb
Zp
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Θ

 

Difference scheme will be stable, when  

 ( )2ˆ ˆ ˆ
, where 

ˆ4
Z w x lt x

ZpD N
ρλΘ ∆

∆ ≤ ∆ =
Θ

 (15) 

Velocity  – for flow  (it is assumed that in time period w vQ 0t =  in the conduit there is 
constant flow) is calculated form the formula 

 2

4 vQw
Dπ

=  (16) 

Respecting additionally dependence 

 2

ˆˆ ˆˆ 4v
v

ZpQQ
Zp Dπ

Θ
=
Θ

 (17) 

in which instead of p , in the conduit the pressure average value was substituted with the 
given constant flow. 

In order to determine average pressure equation  

( ) ( ) ( ) ( )2 2 2,0 0,0 0,0 ,0 xp x p p p l
l

⎡ ⎤= − −⎣ ⎦  

must be integrated in the interval [ ]0, l , then 
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Accepting that in time [ ]0t =  

 ( ) ( ),p x t f x=  for [ ]0,x l∈  

as well as  (0, ) const,p t = ( ) ( ),v vQ l t Q t= , with assumption, that between points 1Nx −  and Nx  

flow is steady, from equation 2 2 2
1 2 2 5

ˆˆ16 ˆ
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3. Approximation of partial differential equation by a set of ordinary differential 
equations  

Pneumatic transmission long line is presented in Fig. 1 in the form of a series connected 
pneumatic resistors iR  and capacitances  respectively. Laminar flow with flow rate  
through all resistors is assumed. For these assumptions, the following dependencies are 
correct: 

iC iq

 
Fig. 1. Transmission line composed from  elements n RC  

 

( ) ( )

( ) ( )
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as well as  

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1
1

2 1 2
2

1 2
1

1

1

1

1

1
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⎡ ⎤= −⎣ ⎦

= −⎡ ⎤⎣ ⎦
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M  (19) 

Set of equations (18) and (19) we can write in matrix form 

 p= +Cp Ap bp&  (20) 

Where the particular matrixes are in the 
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Matrix  is again three diagonal, which shows that signal in the  element is affected by 
signals in the previous and the next element. Other signals have no influence. It is consistent 
with expectations based on purely physical consideration. 

A -thj

4. Approximation of partial differential equation by ordinary differential equation 
Previously it was proved, that a given object with distributed parameters may be described, 
with chosen accuracy, by a set of differential equations or a set of difference equations. 

In some conditions we can completely neglect the fact, that the object parameters are of 
distributed parameters character. We knowingly accept inaccuracy of the obtained in this way 
model. One may use experimental results for checking if the system dynamics may be omitted 
or if one may derive an accurate model and carry out an accurate analysis of dynamic 
properties. 

One may obtain an answer to the question, if a simplified model provides us with 
sufficient information. In references, there are many methods of approximate description of 
transmission line. The precision evaluation criterion, in most cases of simplified mathematical 
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models with lumped parameters, is comparison of the object and the model responses in a 
concrete case. 

Simplified models, assumptions for which have been obtained, and experimental results 
are presented below . 

Model I 
This model has been obtained by using following simplifications for hyperbolic trigonometric 
functions: 

– for ( )1ch ~ 1
1 2

sh

l l
l

l l

γ γ
γ

λ λ

⎧ ≈ +⎪< ⎨
⎪ ≈⎩

 

– for 11 ch sh
2

ll l l eγγ γ λ> ≈ ≈  

 
Fig. 2. Approximation of dependence l l j lγ δ ϕ= +  

Considering the course of propagation coefficient changes γ  (Fig. 2) according to 
dependence 

l l j lγ δ ϕ= +  

we can accept that 

– for 11l lγ γ< ≈ sT  

– for 1 tl lγ γ ξ> ≈ + sT  

Respecting the above simplifications, equation 
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( ) ( ) sh 1 ch 10,
,
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+
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x
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l
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⎪
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Transient response for x l=  has the form 

 ( )
( )

1

1
2, 1 , for

0, 0, for

tt T r
T

t

t

p l t e
p t t T

⎛ ⎞− ⎛ ⎞− +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎧
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 (22) 

Frequency characteristics (magnitude and phase) are expressed by dependencies: 
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22

1

2
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2
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T
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ω
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2

1 , for 1
2
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ω ω
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⎪

2 >
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Model II 

For the assumption that volume on the end  is large, and frequency of input sinusoidal 
signals are small, we can assume that: 

kV

1kCr
lC

=
′
�  as well as 2 cl π

ω
�  

Hence, we can write 

 0x l xp pp p
x x l

= =−∂ ∆
≈ =
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Dependencies 0x l xp pp p
x x l

= =−∂ ∆
≈ =

∂ ∆
 obtain the form 
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After rearranging and taking into consideration that 

kC r
C l

=
′

 as well as ( ) d,
d

x l
m k

pQ l t C
t
==  

we obtain 

 
( )

( )

( ) ( )

0
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d
d1

d

m x
x l xm x

x l
m x

Q
p RQ L p

t
pr C Q

t

=
= ==

=
=

+ + =

+ =
 (26) 

Simplified differential equation of long line after respecting given dependences has the form 

 ( ) ( )
2

1 2 1 02

d d1 1
d d

x l x l
x l x

p pr TT r T p p
t t

= =
= =+ + + + =  (27) 

for which corresponding transfer function is as follows 

 ( )
( ) ( ) ( )2

1 2 1

, 1
0, 1 1 1

p l s
p s r TT s r T s

=
+ + + +

 (28) 

Respecting limited acoustic velocity, long line transfer function may be expressed by formula 

 ( )
( ) ( ) ( )2

1 2 1

,
0, 1 1 1

tsTp l s e
p s r TT s r T s

−

=
+ + + +

 (29) 

Transient response on input step function of long line described by equation (29) has the form  

 ( )
( )

,
1

0,

t t

a

t T t T
Ta b

a b a b

p l t T Te e
p t T T T T

− −
− −⎛ ⎞

= − −⎜⎜ − −⎝ ⎠

bT ⎟⎟  (30) 

where  ~ tt T≥

( )

2
,

2

2
11 1

1

a b
TT

r ζ

=
−

+
m

 for assumption, that  2(l +r)   lζ ≥

As we can see, dependences (30) and 

( )
( ) ( )

11 2
2 2

1 2 1 2

, 21
0, 1 sin

t t

k

t T t T
Tk k

k k k k kk k k

p l t T Te
p t T T T Tr rβ β β

− −
− −⎛ ⎞

= − −⎜ ⎟⎜ ⎟− −+ + ⎝ ⎠
∑ 2kTe  are not much differ-

rent. After substituting s jω=  to (29), we obtain magnitude and phase frequency 
characteristics, respectively. 

 ( )
( ) ( )22 2

1 2 1

1

1 1 1
A

r TT r T
ω

ω ω
=

⎡ ⎤ ⎡− + + +⎣ ⎦ ⎣
2
⎤⎦
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   (32) 
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Next were carried out analyses of simplified models I and II and full model described by 

dependencies ( )
( ) ( )

11 2
2 2

1 2 1 2

, 21
0, 1 sin

t t

k

t T t T
Tk k

k k k k kk k k

p l t T Te
p t T T T Tr rβ β β

− −
− −⎛ ⎞

= − −⎜ ⎟⎜ ⎟− −+ + ⎝ ⎠
∑ 2kTe  from 

reference Kamiński L. M. (1996) in relation to the real system. For pneumatic conduit with 
dimensions 4,1   with volume on the end mm,D = 60 ml = 3lkV =  (Fig. 3 – 7) were 
calculated line parameters 

1

2

1, 26s 0,207s 3,79
0,034s 3,05

tT T r
T ζ
= = =
= =

 

On the basis of the following equations 

( )
( ) ( )

1 21 2
2 2

1 2 1 2

, 21
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k k

t T t T
T Tk k

k k k k kk k k
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p t T T T Tr rβ β β

− −
− −⎛ ⎞

= − −⎜ ⎟⎜ ⎟− −+ + ⎝ ⎠
∑ , 

as well as (22) and (30), which were simplified to forms 

( )
( )

5,1
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5,7

1 1,025 for 0,5

,
1 for

0,
1 for

t

t

t

t T

t T

t
t T

t

e t
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e t
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e t

−
−

−
−

−
−

⎧
− ≥⎪

⎪
⎪= − >⎨
⎪
⎪ − >
⎪⎩

s

T

T

 

pressure changes after step input (  have been determined, for average pressure in 
line 

1000Pap∆ =
100 kPap = ). Theoretical analyses results are compared with measurement results in 

Fig. 3. Then this procedure was  repeated for the case when  . 

 
Fig. 3. Line pressure courses in case when 0kV ≠  

Results are presented in Fig. 4. Equation (30) was derived for assumption . It is 
confirmed in Fig. 4, when we can see big discrepancy between experimental and calculated 

1r �
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transient outputs after using equation (30) for case 0kV = . From comparison of Figs 3 and 4 
results a conclusion that from presented two simplified models of transmission line, the model 
described by equation (32) is favorable. The difference between the real object and its model 
is insignificant both for blank off conduit and for line with big volume on the end. 

 

Fig. 4. Line pressure courses in case when 0kV =  

 
Fig. 5. Magnitude frequency characteristics of pressure changes in the line 

Magnitude and phase frequency characteristics, both experimentally determined and 
calculated by using equations 
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( )
( )

( )

2

2

1

ch cos 1 tgh tg

tgh tg tg tgh

A
l l r l l l l

l l r l l l l

ω
δ ϕ δ δ ϕ ϕ

δ ϕ δ ϕ ϕ δ

=
+ −⎡ ⎤⎣ ⎦

+ + +⎡ ⎤⎣ ⎦

+ , 

( ) ( )
( )

tgh tg tgh
arctg

1 tgh tg
ltg l r l l l l

r l l l l
δ ϕ δ ϕ ϕ δ

ϕ ω
δ δ ϕ ϕ
+ +

= −
+ −

 

(23), and (24) as well as (32) and (33) are presented in Figs 5 and 6. 

The object of comparison was conduit of length 60m,l =  diameter 6 mm,D =  volume on the 
end  and with pressure 0kV = 160 kPap = . Because model II was derived for assumption of 
small input frequency, we can see that for growing frequency, discrepancy of results between 
those calculated from equations (31), (32), and the accurate model, and experimental results 
grows. 

 
Fig. 6. Phase frequency characteristics of pressure changes in the line 

The above figures confirm usefulness of simplified model I (equations (23) and (24)) 
although there is no possibility of calculation of magnitude caused by reflection in conduits. 

5. Conclusions 
Generally it can be concluded that consistence between experimental and computational data 
improves along with the rise of damping coefficient 

Some results confirm usefulness of simplified model I although there is no possibility of 
calculation of magnitude caused by reflection in conduits. 
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Because model II was derived for assumption of small input frequency, we can see that for 
growing frequency, discrepancy of results between those calculated from model I equations, 
and the accurate model, and experimental results grows. 
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