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MATHEMATICAL MODELS OF PNEUMATIC DAMPING SYSTEMS 
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Summary: The mathematical models of selected cascade systems presented in 
this article were obtained by means of analysis and experiment (to identify the 
relevant parameters). These models facilitate the investigation of such systems in 
the demodulation of pneumatic square-wave signals with modulated pulse width 
coefficient ( 0 1γ = ÷ ) and various amplitudes ( 0 20 100 kPap = ÷ ) and frequencies 
( 1 100Hzf = ÷ ). Analytical investigations indicated the possibility of shaping the 
quality of the filter by the choice of geometric dimensions of the filter ( ,ij kd V ) 
and the method of applying the input signal. The quality of filtration is indicated 
in this case by the limiting angular frequency ( grω ), the settling time of the signal 
( uT «7) and the linearity of the static characteristic ( ( )\ 0 ,o kp f p γ= ). 

1. Introduction 
In many pneumatic measuring devices - Kaminski L.M. (1976), Werszko M. (1974), the 
information-carrying signal is a series of square pulses of variable amplitude 0p , frequency l , 
or pulse width coefficient /Tγ τ=  (Fig. 1). In all these cases, pneumatic low-pass filters are 
used. The role such filters is played by cascade systems built from resistors and chambers of 
fixed or variable volume. 

The typical response of a dual-chamber pneumatic cascade to a series of square pulses 
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of parameters 0 100kPap = , 0.25γ = and 0.75γ =  and 2Hzf =  is shown in Fig. 2. 
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Fig. l. Periodic square-wave signal: a) amplitude modulation, b) pulse-width modulation, 
c) frequency modulation 

 

Fig.2. Response of dual chamber cascade to a series of square impulses, where 
[ ] 2

01 12 12 1 2, , mm , cmd d l V V     – cascade parameters  

The properties of the output signal ( )1p t  or ( )2p t  are represented by: 
− the static characteristic of the filter 
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− the dynamic error 

uT  – the settling time of the output signal for the desired value of d  ( d  – the permitted 
amplitude of the output signal) e. g. 
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=  – the limiting frequency of the output signal (the frequency above which the 

amplitude of the output signal 2p∆  is less than the permitted value of d) e.g. 
 2for grf f p d> ∆ <  (4) 

As a measure of filtration quality, many researchers use the quality indicator defined as 
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2. Mathematical model of the experimental systems 
Analysis of the functioning of pneumatic filters at moderate pressure (20 ÷ 100 kPa) leads to 
a mathematical description of the thermodynamic processes of a variable mass of air, based 
on mass-energy balance equations Gerc E.W. (1973). If we assume that the cascade is built 
from a series of chambers joined together by resistors, we can obtain a generalised 
mathematical description, which clearly depicts the modelled system and enables analysis and 
modification of the system. Changes in air pressure and temperature in the k(h chamber of 
fixed volume kV  are defined by the following equations: 
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where: ,i j  are the indices of the parameters of the air before and after the chamber, 
[ ], Ki kΘ Θ  – the air temperature before the resistor and in the chamber, 

[ ]287 N m/kg KR = ⋅ ⋅  – the gas constant of air, κ  –politropy coefficient, [ ], kg/sik kjm m& &  
– mass flow of air through the resistor before and after the k-th chamber. 

The mass flow characteristic of the pneumatic resistors are defined by the equation: 
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In building a mathematical model for a chosen cascade structure, it is important to take into 
account the correct direction of air flow from the ith to the kth, or from the kth to the ith 
chamber, from the jth to the kth or from the kth to the jth chamber. In this work, single and 
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dual chamber pneumatic cascade systems were investigated (parametric identification and 
optimization). The following notation is used in equations: 

1 2 1 2
1 2 1 2

0 0 0 0

, , , ,p pa a b b
p p

Θ Θ
= = = =

Θ Θ
 

01 10 12 21 01 10 02 20, , , ,K K K Kα α α α α α α α= = = =  

01 10 12 21 01 10 02 20, , , .K K K Kf f f f f f f f= = = =  

For a single-chamber pneumatic cascade (Fig. 3) the equations take the form: 
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where: 

1

i
pD , 

1

iDΘ  – intakes to the first chamber (in accordance with equation (3)), 

1

j
pO , 

1

jOΘ  – outflows from the first chamber (in accordance with equation (3)). 

 

Fig.3. Single chamber pneumatic cascade 

For a dual-chamber pneumatic cascade (Fig 4) the equations take the form 
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where: 

1
,i

pD  
2
,i

pD  
1 ,

iDΘ  
2

iDΘ – intakes to the first and second chambers (according to (3)), 

1
,j

pO  
2
,j

pO
1
,jOΘ 2

jOΘ  – outflows from the first and second chambers (according to (3)). 

 

Fig.4. Dual chamber pneumatic cascade 
The values ( ,ij ijBα ) of the flow characteristics of the pneumatic resistors were obtained by 
identification [3]. The vector of the identifying parameters has the form: 

− for a single chamber cascade 
 [ ]01 01 01 01, , ,K KP B Bα α=  

− for a dual chamber cascade 
 [ ]01 12 02 01 12 02, , , , ,K KP B B Bα α α=  

The quality indicator of identification e , which is a measure of the agreement of the 
properties of the system as obtained experimentally and analytically is obtained using the 
least squares method in the form: 

 ( ) ( ) ( )
0 0

d d
T T Th t t e t e t tε = = ⋅ ⋅∫ ∫ 1  (7) 

where: 

( )h t  – identification error function, 

( )e t  – difference between the output signal of the system (experiment) and the output signal 
of the mathematical model (calculation) dependent on the vector P  of identified 
parameters, 

1 – unit matrix. 

3. Dynamic Error of the Filter 
Although a measure of the dynamic error of the filter is the minimum of the quality indicator 
( QI ), the interpretation of the numerical value of this indicator, or the comparison of the 
indicators of different pneumatic systems is problematic. Therefore in this work, the factors 
( ,gr nTω ) of the indicator are presented in the form of two interdependent graphs: ( )T f SP= , 

( )gr f SPω = where: SP  are system parameters. The results of the investigation of the single 
chamber system (Fig. 3, 01 0Kd = ) are shown in Fig. 5, and the dual chamber system (Fig. 4, 

02 0Kd = ) in Fig. 6. From the graphs, we can state that to obtain 5 rad/s,grω =  for example, it 
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is necessary to use a dual-chamber cascade with parameters e.g. 3
1 2 100cm ,V V= =  

01 0.3mm,d =  12 0.42mm,d =  which gives a settling time of 7.4suT = . 

  

Fig.5. Dependency of dynamic error 
parameters on the constructional 
parameters of a single chamber 
cascade: a) ( )12 1, ;uT f d V=   

b) ( )12 1,gr f d Vω =  

Fig.6. Dependency of dynamic error 
parameters on the constructional 
parameters of a dual chamber 
cascade: 3

1 2 100cmV V= = :  
a) ( )12 01, ;uT f d d=   

b) ( )12 01,gr f d dω =  

4. Static Characteristic of the Filter 
In impulse devices working in the pressure range 20 100kPa,÷  pneumatic resistors give 
a turbulent flow. Hence the static characteristic of the filter is nonlinear in both the pulse-
width coefficient γ  and the amplitude 0p  of the input signal. The results of research by the 
author and others ViktorowV.V. (1982) indicate that it is necessary to optimize the 
parameters of the filter in order to maximize the linearity of the static characteristic. The 
method of least square differences is used. With this criterion, the minimum of the sum of the 
square differences between the pressure values obtained from the mathematical simulation 
and the values defined by the straight line ( ay b+ ), where: 
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The deciding variables in the function are the diameters of the resistors ( )ijd  and the 

amplitude of the input signal *
0p . 

Fig. 7 shows the static characteristic of a single-chamber pneumatic filter (Fig. 3) in which 
the optimized parameters are: 

− line l – 01 0.60mm,d =  01 0.43mm,Kd = 0 100 kPa,p =  *
0 93.76 kPa,p =  

− line 2 – 01 0.60mm,d =  01 0.48mm,Kd =  *
0 0 100 kPa.p p= =  

In both cases 3
1 100 cm .V =  

  

Fig.7. Static characteristic of single chamber 
filter after optimization 

Fig. 8. Static characteristic of dual chamber 
filter after optimization 

Fig. 8 shows the static characteristic of a dual chamber pneumatic filter (Fig. 4) in which the 
optimized parameters are: 

− line l – 01 0.70mm,d =  12 0.78mm,d =  02 0.29mm,Kd = *
0 0 100 kPa,p p= =  

− line 2 – 01 0.70mm,d =  12 0.78mm,d =  02 0.43mm,Kd =  0 100kPa,p =  
*
0 92.10 kPa,p =  

− line 3 – 01 0.70mm,d =  12 0.69mm,d =  02 0.41mm,Kd =  *
0 0 100 kPa.p p= =  

In all cases 3
1 2 100 cm .V V= =  

It is worth noting that, depending on the permitted range of the parameters (limits on the 
upper and lower values) different values of the parameters are obtained, and also different 
shaped characteristics. 
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5. Conclusion 
The results presented in this work of research on the use of single and dual chamber cascades 
in the filtration of periodic pneumatic signals demonstrate the possibility of shaping their 
properties (quality, static characteristic) by: 

− appropriate choice of the geometric dimensions of the resistors, 

− selection of the method of application of the input signal to the chambers, 

− appropriate choice of amplitude of the correction signal ( *
0 0/ ~ 0.93p p ≈ ). 
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