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Summary: This contribution is focused on the analysis of dynamic behavior of 
elastic body moving in liquid. In many technical applications this motion is with 
large displacements. Some technical applications can be vibration of blades or 
rotors in centrifugal pumps or water turbines. But on other hand presented 
approach has more general application. In general case dynamic behavior are the 
modal behavior, steady state response and nonstationary response. Because of 
are assumed the large displacements, this analysis is nonlinear and modal 
behavior depends on a parameters. There is very difficult or impossible to do this 
analysis using commercial programme systems. It is caused by limited number of 
boundary conditions for contact between body and liquid in these systems. In this 
contribution is presented the mathematical model of a new type of boundary 
conditions which allowed the modal analysis and computing the steady state 
response. In principle this analysis is if the frequency domain. It is necessary 
provided some testing, because this approach is new. For this case, the 
curvilinear co-ordinates were chosen. The Bézier body was chosen for the 
description of geometrical configuration and also for approximation the solution. 
MATLAB programme code was chosen for software processing. 

 

Nomenclature 

ijijij kbm ,,  - elements of local matrices of mass, damping and stiffness, iu  - i  - base function 

(see appendix), ES  - area of element with pressure lay - out, σp,  - vectors of pressure and 

viscous forces in the i  direction, reached on surface unit, p  - pressure, ijΠ  - nonreversible 

stress tensor, ji nn ,  - one - unitary vector of external normal line element with regard to 

liquid, f  - function dependent on p and σ  as a consequence of FEM, 1η  - dynamic viscosity, 

ic  - velocity, zxi ,  - coordinates, lq  - time function for l th shape of vibration, ilv  - i th 

deformation parameter for l th shape of vibration, 321 ,,, ΓΓΓS  - denotation of surfaces 

enclosing liquid volume, 21 ααα ,,,ilα  - velocity functions, 321 ββββ ,,,,, 21 ilil
ββ  - pressure 

                                                 
* Prof. Eng. Eduard Malenovsky, DSc.: Brno University of Technology, Technicka 2, 616 69 Brno, Czech 
Republic; tel.: +420 5 4114 2855, fax: +420 5 4114 2876, e-mail: malenovsky@fme.vutbr.cz 
**  Prof. Eng. František Pochyly, PhD.: Brno University of Technology, Technicka 2, 616 69 Brno, Czech 
Republic; tel.: +420 5 4114 2335, fax: +420 5 4114 2347, e-mail: pochyly@fme.vutbr.cz 

561



 

functions, δ  - Dirac function, τ,t  - time, ρ  - density, , , , , , ,A B C A B C 0  - matrices, 1 2 3, ,f f f  - 

right side vectors, 10210 ,,,, LLRRR  - geometrical dimensions, r  - state vector, ( ), ,u v w =r r  - 

value of geometrical or unknown value by the Bezier body application, ijkr  - value of 

geometrical or unknown value in control points by the Bezier body application, ka  - contra 

variant velocity component, , , ,iu u v w - curvy – linear co – ordinates, niB . – Bernstein 

multinomial, ijkω  - weight of values in control points by the rational Bézier body application.  

 

Keywords:  

Fluid structure interaction, finite element method, added mass, added damping, experimental 
analysis, and finite element method 

1. Introduction 

A solution a problem of fluid - elastic structure interaction belongs to most difficult in 
mechanics. From the point of view, they are three basic tasks. As the first it is the eigen value 
problem, as the second can be the solution of steady state response do to harmonic (periodic) 
excitation and at last the solution of unsteady state response (computational simulation).  

It is evident in the last time a takeovers and mergers the computational packages, where 
were interested only in the individual and limited parts of mechanics. As a sample is the 
merging the ANSYS (solid mechanics) and FLUENT (hydromechanics). This process is 
inevitable and makes the development and creation a new mathematical and computational 
models and algorithms of solution.  

It is necessary to have two different types of mesh by the solution the fluid – elastic 
structure interaction. One mesh is for a solid or structure and the second one for a fluid or 
surroundings. According the solving problem is almost already necessary to do some 
changing of mesh during the solution. It is evident, that this step leads to increasing the 
computational time consuming. In substance they are three basic types of changes of mesh  

a. Layering 

b. Smoothing 

c. Remeshing 

When are used the commercial programme package, especially ANSYS and FLUENT, 
these approaches are in detail presented in (FLUENT 6.2 1988). General overview of methods 
of computational modelling is presented by Axise (2007).  

Problem of fluid structure interaction needs the different approach to the computational 
modelling. General has bad numerical stability and is very time consuming. That is why a lot 
of scientists deal with the idea how to achieve better numerical stability and shorter tome of 
calculation.  

Daneshmand & Niroomandi (2006) presented a ne method to simulation fluid – structure 
interaction. It is based on the use of a meshless technique named as Natural Element Method 
or natural neighbor Galerkin method in which the natural neighbor interpolation is used for 
the construction of test and trial function. The eigen value problem arising from the 
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computation of the free vibrations of a coupled fluid – structure system is solved. 
Displacement variables for both the solid and the fluid domains are used, but the fluid 
displacements are written as gradient of potential function. One classical example is 
considered: free vibration of a flexible cavity filled with liquid.  

One of the possibilities how to achieve this, is presented by Stein et al. (2007). In 

computation of fluid-structure interactions, is used mesh update methods consisting of mesh-
moving and remeshing – as - needed. When the geometries are complex and the structural 
displacements are large, it becomes even more important that the mesh moving techniques are 
designed with the objective to reduce the frequency of remeshing. To that end, is present here 
mesh moving techniques where the motion of the nodes is governed by the equations of 
elasticity, with selective treatment of mesh deformation based on element sizes as well as 
deformation modes in terms of shape and volume changes. It is also presented some results 
from application of these techniques to a set of two-dimensional test CASE. 

Legay & Kölke (2006) presented new approach to the solution, where velocity and 
pressure are solved on base the weak formulation of the governing equations of viscous and 
incompressible fluid flow (Navier – Stokes equations) is discretized by finite space – time 
elements using discontinuous Glerkin scheme for time integration. To capture the occurring 
moving discontinuities from embedding a thin solid body into the flow field, a locally 
enriched space time finite element method is applied to ensure a fluid mesh independent from 
the current configuration of the structure. Based on the concept of the extended finite element 
method, the space – time approximation of the pressure is enriched to present strongly 
discontinuous solution at the position of the structure. The similar approach is presented by 
Kölke & Legay (2006). A numerical method for investigation challenging interaction 
phenomena of viscous fluid flow and flexible structures of negligible thickness like 
membranes and plates on a topologically fixed fluid discretization is presented. Since the 
formulation of fluid, structure and coupling conditions uniformly uses velocities as unknown 
and the integration of the governing equations is performed on the deformed space – time 
mesh, the realization of a strong coupling of the physical domains becomes very comfortable 
and results in a monolithic system. 

Sigrist et al. (2004) presented an approach to him solution of the fluid structure interaction 
with a finite element discretization or with modal approach. The structure problem is modeled 
in the CFD code with various FORTRAN subroutines. Fluid is solved using finite volume 
discretization. For the achieving better numerical stability the special algorithm for the 
discretization in time and spatial domains is suggested.  

Giannopapa & Papadakis (2004) presented the first stage of development of such a 
method, in which the solid equations are formulated so as to be solved for velocity and 
pressure i.e. for the same unknowns as the ones for the liquids equations.  

In many cases the governing of the fluid are expressed in an Arbitrary – Lagrangian – 
Eulerian (ALE) frame reference that in a natural way treats the complex movement of the 
interface between the fluid and the structure without the need for surface tracking procedures. 
Also Lund et al. (2004) presented approach for analysis and semi – analytical design 
sensitivity analysis of time dependent fluid – structure interaction problem discretized by 
finite element methods. The aim of the method is to provide a general design tool than can be 
used for both analysis and synthesis of fluid - structure interaction where the dynamic 
interaction of a flexible structure and a viscous flow is in focus.  
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In immersed interface methods, solid in a fluid are presented by Sheng & Wang (2007), by 
singular forces in the Navier – Stokes equations, and flow jump conditions induced by the 
singular forces directly enter into numerical schemes. The article is focused on the 
implementation of an immersed interface method for simulation fluid – solid interaction in the 
3D space. The method employs the method of control volumes for the spatial discretization 
and method of Runge Kutha the 4 order for the time integration. The FFT – based Poisson 
solver for the pressure Poisson equation is used. A fluid – solid interface is tracked by 
Lagrangian markers.  

A Lagrangian model for the numerical simulation of fluid – structure interaction problems 
is proposed by Antoci et al. (2007). In the method both fluid and solid phases are described by 
smoothing particle hydrodynamics: fluid dynamics is studied in the inviscid approximation, 
while solid dynamics is simulated through an incremental hypoelastic relation. The interface 
condition between fluid and solid is enforced by a suitable term, obtained by an approximate 
smoothed particle hydrodynamics evaluation of a surface of fluid pressure. The method is 
validated by comparing numerical results with laboratory experiments where an elastic plate 
is deformed under the effect of a rapidly varying fluid flow. 

The newly developed immersed object method is presented by Tai et al. (2007). Parallel 
computation of unsteady incompressible viscous flows around moving rigid bodies using an 
immersed object method with overlapping grids is solved. Approach to parallel calculation is 
presented by Tai et al. (2005). Newly is extended for 3D unsteady flow simulation with fluid 
– structure interaction, which is made possible by combining it with a parallel unstructured 
multigrid Navier – Stokes solver using a matrix – fee implicit dual time stepping and finite 
volume method. An object mesh is immersed into the flow domain to define the boundary of 
the object. The advantage of this is that bodies of almost arbitrary shapes can be added 
without grid restructuring, a procedure which is often time – consuming and computationally 
expensive.  

How is evident from this research study, all tasks the fluid - elastic structure interaction are 
solved as coupled. To achieve better numerical stability and shorter time computing they are 
used special algorithms.  

Another of possibilities for achievement this is application of the new type of boundary 
conditions for contact between continuum and liquid. Approach is based on the application 
the expansion the solution according to eigen shapes of continuum vibration. The authors are 
many years interested in the possibilities, how is possible to separate the continuum and liquid 
from each other. They proved that this is possible for the solid body. The summarizing results 
more then sixth year’s research are presented by Pochylý & Malenovský (2004) and also 
Malenovský & Pochylý (2004). The possibility for separation is based on the approximation 
of solution for velocity and pressure functions in the form of convolutory integrals. In this 
contribution is presented application on an elastic continuum. For simplicity and possibility of 
software performing was chosen cantilever beam with circular cross section vibrating in 
water. The objective is to determine the expressions for local matrices of added mass and 
damping of liquid and suggest algorithm for solution the elastic structure – liquid interaction.  

Similar model sample is presented by Levy & Wilkinson (1976). Vibration a shaft in water 
is solved as coupled problem. Authors are mainly focused on the determination of added 
mass. Only the potential flow is taken into account and the water is considered as ideal. The 
finite element method for the both structure and liquid is used.  
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Introductory study to the solution of this problem is presented by Pochylý & Malenovský 
(2008). In this contribution are derived the expressions for added mass and damping. General 
approach to the analysis of coupled vibrations a beam which is submersed in a liquid is 
presented by Pochylý & Malenovský (2008). The both ideal and real liquid is taken into 
account. The expressions for added mass and damping are derived from the point of view of 
application FEM. 

2. Mathematical model 

The way in order to draw up the mathematical and computational model will be demonstrated 
on the vibration of the bar in liquid. It is possible to generalize it to the case of vibration of 
any elastic continuum in liquid, eventually in any surrounding. The target is to determine the 
relations of local matrices of additional effects by the liquid. The motion equation for the 
finite element of the bar – the free undamped vibration in liquid has the form: 

 
e

ij j ij j ij j i e
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and also according application the FEM is 
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The above mentioned nonreversible stress tensor for uncompressible liquid has the form: 
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The principle of the solution is based on the modal transformation of the bar. Let’s extend the 
state vector of the bar with the help of eigenvectors on this principle. Then, with this 
presumption, the following is valid: 

 ( ) ( ) ( )tqzvtzr lili =,   (4) 

Further, it is important to define the boundary conditions for liquid. On the boundaries of the 
area, filled with liquid, the following is valid: 
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Establishing new defining relations for velocities and pressure in the form of convolutory 
integrals is a very important step for drawing up a mathematical model. With establishing 
velocity and pressure functions depending on the normal bar coordinates it is possible to 
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separate continuum and liquid movements. The velocity of liquid and the pressure in an 
arbitrary place are defined by these relations: 
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where ,il kα β  are new variables. The boundary condition for the liquid velocity on the bar 

surface using this presumption has the form: 

 ( ) ( ) ( ) ( )tqzvdqt kik

t

lil
•• =−∫

0

τττα  (7) 

Now we can analyze the separated liquid. It is necessary to mention in this context, that the 
shape of the continuum vibration doesn’t only influence the velocity boundary conditions, but 
also by this the geometrical configuration is given in the given instant time. The modal 
features of the vibration continuum in the surroundings, in general, depend on the vibration 
amplitude for the given shape of vibration. Let’s assume the liquid is real and incompressible. 
The initial Navier – Stokes and continuity equations for a linear task have this form: 
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The following is valid in the finite dimension space using Bezier body features: 

 
• − + =
=

Aα Bα Cβ 0

Dα 0
 (9) 

The solution is possible to suppose regarding the character of the differential equation in this 
form: 
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We obtain after the substitution (10) into (9) and with respect to boundary conditions: 

                  
( ) ( ) ( )
( )

1 2

3

δ δ δ δ δ δ

δ δ

• • • •+ − + + + = − −

+ = −
1 2 1 2 1 2

1 2

A α α B α α C β β f f

D α α f
 (11) 

We obtain the next equation comparing elements of the general Dirac function derivation in 
the motion equation and the general Dirac function derivation in the continuity relation: 
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and the next: 

 − + = −1 2 2Bα Cβ f  (13) 

Hence the pressure function 2β  is determined: 

 + += − +2 2 1β C f C Bα  (14) 

The velocity and pressure functions are calculated after substitution of the boundary 
conditions for the instant shape of vibration. Neglecting the influence of 2α and 3β  functions 

the following is valid for the velocities and pressures for the l th shape of vibration: 
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Now it is possible to proceed with composing local matrices of additional effects by the 
liquid. We obtain the next equation by the substitution of relations (15) for the velocities and 
pressure into equation (1) using eqs. (2) and (3): 
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We obtain this formula with the presumption that the solution develops into the free vibration 
form i.e. the substitution of relation (4): 
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Hence it is obvious that local matrices of additional effects by the liquid for the l th shape of 
vibration are determined by these equations: 
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It is evident, that real liquid has influence on mass and damping. 

3. Model sample 

The model exercise is a cantilever bar in liquid. This model was chosen with regard to the 
possibility of comparing with an experiment. Scheme of this is on the Fig. 1. The geometrical 
properties are presented in table I. All the dimensions are in millimeters. 
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Fig. 1: Scheme of the model task 

4. Experimental analysis 

For verification the mathematical and calculating model was provided the experimental 
analysis. Experimental kit consists from the cantilever steel tube (beam) which is submersed 
into liquid, in this case into the water. Properties of the beam are presented in Tab. I.  

 

Tab. I: Properties of the beam 

Length L0 [mm] 1100 

Inner radius R0 [mm] 16,85 

Outer radius R1 [mm] 17,85 

 

Vessel with the water is also a tube with different diameters. On the whole the 5 vessels 
was manufactured, but in this contribution are presented some results only from the 3 types. 
Properties of these vessels are evident from Tab. II. Material of vessels was chosen plexiglass. 
Through shine material was chosen for the possibility of control the water level to which is 
beam submersed. Outer vessel was stiffened during the experiment, as possible to achieved 
highest stiffness. This condition is necessary to have for the zero velocity of liquid on the 
outer surface. On the other hand, how was evident from the experiment, this requirement is 

L1 

L0 

Water 

R1 S 
Γ1 

Γ2 
Γ3 

x 

R0 

R2 R3 
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very difficult to realize. The whole arrangement of the experimental kit was such as the free 
end of beam was close the bottom of outer vessel.  

 

Tab. II: Properties of the vessels 

Type of vessels 3 4 5 

Inner radius R2 [mm] 35 50 105 

Outer radius R3 [mm] 40 55 110 

 

On Fig. 2 is a view on the vessels and on Fig. 3 is a general view on the assemblage of kit.  

 

 

Fig. 2: View on the outer vessels 
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Fig. 3: General view on the assemblage of the kit 

 

As an exciter was chosen the harmonic exciter type Brüel & Kjaer 4824, whereas the 
suitable point on the upper part of beam was chosen for excitation. It is evident from fig. 4 the 
connection between exciter and beam. How is also evident from this figure, the exciter is free 
– hanged, whereas the moved part of exciter is fixed with the excited beam. Direction of 
excitation was not changed during the experiment.  
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Fig. 4: Excitation the beam 

 

The two acceleration sensors were chosen for recording the data of vibrating beam. The 
both are type Brüel & Kjaer 4374 and were clued to the inner surface of beam near the free 
end, before the closing the tube.  

 

Evaluation of experiment 

Only the eigen frequency of submersed beam in the water was evaluated during the first 
stage of experiment. The beam vibrates near centered position with relatively small amount of 
vibration. Only the results and comparison of this experiment and calculation (eigen 
frequency) are presented in this contribution. On the whole, the 11 measurements were 
provided with the height of water from 0 to 1000 mm with step 100 mm. For the first shape of 
vibration the frequency the bandwidth 10 - 30 Hz was chosen and 90 - 140 Hz for the second 
one and the both with linear changing the frequency of excitation (constant acceleration). The 
time of increasing the frequency was chosen 32 s for the both shapes of vibration. It means 
that the angular acceleration for the first shape is 0.625α =  Hz/s and for the second shape is 

1.562α =  Hz/s. Only for illustration is on fig. 5 drawn response for the first shape of 
vibration in the same direction as was excitation. The height of water vas 1000 mm and tube 
Nr. 3 was chosen. 
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Fig. 5: Time dependant acceleration 

 

From the time dependant acceleration was calculated the Fourier spectra. The systems 
Brüel & Kjaer  HW – 3560D Pulse and Brüel & Kjaer SW – 7700 Pulse Labshop were used 
for the recording of data and numerical treatment of accelerations. Only for illustration is on 
fig. 6 drawn the Fourier spectra, corresponds to the time dependence which is drawn on fig. 5.  
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Fig. 6: The Fourier spectra 

 

On behalf of identification the maximum of amplitude in the Fourier spectra and the 
frequency bandwidth near the resonance peak was determined the eigen frequency and modal 
damping for given shape of vibration. In this contribution is presented the comparison only 
the eigen frequencies. On figures 7 and 8 is presented the comparison for the first and the 
second shape of vibration. In the legend the abbreviation „exp“ means that the results 
concerned to the experiment and abbreviation „calc“ means the results concerned to the 
numerical solution.  
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Fig. 7: Comparison for the first shape 
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Fig. 8: Comparison for the second shape 

5. Computational analysis  

The results of the model task are only for matter – of - fact purposes and that is to present the 
possibilities of computational modeling. The whole analysis is carried out only for the first 
and the second shapes of vibration. The velocity and pressure field were calculated for the 
cases of liquid at a height from 0 to 1000 mm with step 200 mm. The task is symmetrical 
hence the velocities are calculated only on one half - plane. The vectors of velocities on the 
beam surface correspond to the chosen shape of vibration. Software performing and all 
calculations were done in program system MATLAB.  

For the software performing are used curvy – linear co – ordinates. Transformation 
relations are presented in the appendix. For the solution of the Navier – Stokes eq. is used 
Finite Volume Method (FVM) and for the continuity eq. Finite Difference Method. (FDM) 
This combination was chosen to achieve the best numerical stability of numerical solution. It 
is necessary to note that all possible combination between FVM and FDM methods. Also it is 
necessary to note, that the both methods are used as collocations.  

The Bezier body is used for the approximation of the geometrical configuration and for the 
also for the approximation of velocity and pressure solution. The expressions for an 
application see the appendix.  
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6. Conclusions 

In this contribution is presented, new approach to the composition of local added modal 
matrices of mass and damping of liquid. They are assumed and presented, two models of 
liquids, ideal and real. For ideal liquid, the tensor of reversible forces is not included. It is 
possible to use, the presented approach to the solution, for the continuum with large 
displacement and large constrains.  

 

The general algorithm for numerical analysis is as follows:  

1. Whole range in frequency or time domain is divided into finite number of steps. 
2. It is provided the modal behavior analysis of individual continuum (without liquid) for 

finite number of steps of geometry configuration.  
3. Analysis of individual liquid with the boundary conditions which are given by the chosen 

eigen shape of vibration. This step is repeated until the finite number of eigen values is 
achieving. For each step, the velocity and pressure field for given continuum position, is 
obtained.  

4. On behalf of velocity and pressure field on continuum surface are calculated the added 
matrices of liquid influence. Also the global added modal matrices for given shape of 
vibration and given vibrating position of continuum are composed.  

5. Interpolation analysis of individual continuum with including the global matrices from 
analysis of individual liquid (step 4) is used during numerical solution.  

 

They are evident the following conclusions from the comparison the experimental and 
calculation analysis (see figures. 7 and 8):  

 

1. Relatively good agreement between the experiment and numerical solution is evident for 
the form of dependence of eigen value on the height of water.  

2. For the both shapes are evident lower values for the numerical solution. It can be caused 
by the following reasons: 
a. The Fourier transformation is valid for the periodic signal. In our case the 

measurement signal was transient with the variable frequency of excitation. The 
Fourier transformation is not right for this analysis. Next experiment can be done by 
smaller angular acceleration and smaller force of excitation.  

b. It was evident from experimental analysis, that the eigen frequency in the two 
directions are a little bit different and both are bounded.  

c. Mathematical and computational model is not completed for calculation the added 
mass and damping. The functions2α  and 3β  are not included for the calculation of 

added effects.  
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Transformation relations from the Cartesian to the curvy – linear co - ordinates 
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Relations for the normal and rational Bézier 3D body application 
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