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COMPUTATIONAL AND EXPERIMENTAL ANALYSIS THE
INTERACTION OF AN ELASTIC BODY WITH AN LIQUID
ACCORDING THE LARGE DISPLACEMENT AND STRAINS

E. Malenovsky, F. Pochyly”

Summary: This contribution is focused on the analysis ofaigit behavior of
elastic body moving in liquid. In many technicaplgations this motion is with
large displacements. Some technical applications loa vibration of blades or
rotors in centrifugal pumps or water turbines. Bom other hand presented
approach has more general application. In geneededynamic behavior are the
modal behavior, steady state response and nonetatjoresponse. Because of
are assumed the large displacements, this analigsisonlinear and modal
behavior depends on a parameters. There is vefiguwlif or impossible to do this
analysis using commercial programme systems.daised by limited number of
boundary conditions for contact between body aqdidi in these systems. In this
contribution is presented the mathematical modelhofiew type of boundary
conditions which allowed the modal analysis and potimg the steady state
response. In principle this analysis is if the fieqcy domain. It is necessary
provided some testing, because this approach is. rleev this case, the
curvilinear co-ordinates were chosen. The Béziedybavas chosen for the
description of geometrical configuration and also &pproximation the solution.
MATLAB programme code was chosen for software gsicg.

Nomenclature

m;, b, k; - elements of local matrices of mass, dampingsiffthess,u; - i - base function
(see appendix)S. - area of element with pressure lay - opjg - vectors of pressure and
viscous forces in the direction, reached on surface ungt, - pressure[1; - nonreversible
stress tensorp,n; - one - unitary vector of external normal lineraent with regard to
liquid, f - function dependent opand ¢ as a consequence of FEMN, - dynamic viscosity,
¢ - velocity, x,z - coordinates,q - time function forl™ shape of vibrationy, - i"
deformation parameter fot™ shape of vibration,S,I,,I,,I, - denotation of surfaces

enclosing liquid volumea;,a,a,,a, - velocity functions, g, , 5, ,B,B,,B,.B; - pressure
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functions, d - Dirac function,t,z - time, p - density,A,B,C,A B C 0 - matricesf, f,f. -
right side vectorsR), R, R,, L, L, - geometrical dimensions, - state vectory (u,v, w) =r -
value of geometrical or unknown value by the Bediedy application,r; - value of

geometrical or unknown value in control points bg Bezier body applicatiorg® - contra
variant velocity componenty',u, ;W - curvy — linear co — ordinates3". — Bernstein
multinomial, &, - weight of values in control points by the raibBezier body application.

Keywords:

Fluid structure interaction, finite element methadded mass, added damping, experimental
analysis, and finite element method

1. Introduction

A solution a problem of fluid - elastic structuretaraction belongs to most difficult in
mechanics. From the point of view, they are thragdtasks. As the first it is the eigen value
problem, as the second can be the solution of gtstatle response do to harmonic (periodic)
excitation and at last the solution of unsteadiestasponse (computational simulation).

It is evident in the last time a takeovers and raeyghe computational packages, where
were interested only in the individual and limitpdrts of mechanics. As a sample is the
merging the ANSYS (solid mechanics) and FLUENT (oydechanics). This process is
inevitable and makes the development and creatinava mathematical and computational
models and algorithms of solution.

It is necessary to have two different types of mbghthe solution the fluid — elastic
structure interaction. One mesh is for a solid toncture and the second one for a fluid or
surroundings. According the solving problem is alimalready necessary to do some
changing of mesh during the solution. It is evidehat this step leads to increasing the
computational time consuming. In substance theyhaee basic types of changes of mesh

a. Layering
b. Smoothing
c. Remeshing

When are used the commercial programme packagecieip ANSYS and FLUENT,
these approaches are in detail presented in (FLUERT988). General overview of methods
of computational modelling is presented by Axise(?2).

Problem of fluid structure interaction needs th#edent approach to the computational
modelling. General has bad numerical stability endery time consuming. That is why a lot
of scientists deal with the idea how to achievadvaiumerical stability and shorter tome of
calculation.

Daneshmand & Niroomandi (2006) presented a ne rdeih@imulation fluid — structure
interaction. It is based on the use of a meshkdmique named as Natural Element Method
or natural neighbor Galerkin method in which théura neighbor interpolation is used for
the construction of test and trial function. Thegesi value problem arising from the
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computation of the free vibrations of a coupledidlu- structure system is solved.
Displacement variables for both the solid and thedfdomains are used, but the fluid
displacements are written as gradient of potenfimiction. One classical example is
considered: free vibration of a flexible cavitydd with liquid.

One of the possibilities how to achieve this, iggented by Stein et al. (2007). In
computation of fluid-structure interactions, is disaesh update methods consistrignesh-
moving and remeshing — as - needed. When the geesetre complex anithe structural
displacements are large, it becomes even more tartinat the mesh moving techniques are
designed with the objectite reduce the frequency of remeshing. To that ertesent here
mesh moving techniques where the motion of ntbhdes is governed by the equations of
elasticity, with selectivéreatment of mesh deformation based on elemens sizewellas
deformation modes in terms of shape and volumegdsmh is also presented some results
from application of these techniquesatset of two-dimensional test CASE.

Legay & Kolke (2006) presented new approach to sbaition, where velocity and
pressure are solved on base the weak formulatidgheofjoverning equations of viscous and
incompressible fluid flow (Navier — Stokes equasipis discretized by finite space — time
elements using discontinuous Glerkin scheme foe timiegration. To capture the occurring
moving discontinuities from embedding a thin sobddy into the flow field, a locally
enriched space time finite element method is agpbeensure a fluid mesh independent from
the current configuration of the structure. Basedle concept of the extended finite element
method, the space — time approximation of the presss enriched to present strongly
discontinuous solution at the position of the duiee. The similar approach is presented by
Kolke & Legay (2006). A numerical method for invgstion challenging interaction
phenomena of viscous fluid flow and flexible stwrets of negligible thickness like
membranes and plates on a topologically fixed fldiscretization is presented. Since the
formulation of fluid, structure and coupling condits uniformly uses velocities as unknown
and the integration of the governing equationsaggsmed on the deformed space — time
mesh, the realization of a strong coupling of thggical domains becomes very comfortable
and results in a monolithic system.

Sigrist et al. (2004) presented an approach todahation of the fluid structure interaction
with a finite element discretization or with modglproach. The structure problem is modeled
in the CFD code with various FORTRAN subroutineliid-is solved using finite volume
discretization. For the achieving better numeristdbility the special algorithm for the
discretization in time and spatial domains is setgg:

Giannopapa & Papadakis (2004) presented the ftegesof development of such a
method, in which the solid equations are formulasedas to be solved for velocity and
pressure i.e. for the same unknowns as the onékddiquids equations.

In many cases the governing of the fluid are exg@ésn an Arbitrary — Lagrangian —
Eulerian (ALE) frame reference that in a naturalyvieats the complex movement of the
interface between the fluid and the structure witltbe need for surface tracking procedures.
Also Lund et al. (2004) presented approach for y@island semi — analytical design
sensitivity analysis of time dependent fluid — stawe interaction problem discretized by
finite element methods. The aim of the method iprtavide a general design tool than can be
used for both analysis and synthesis of fluid udtire interaction where the dynamic
interaction of a flexible structure and a viscdas\fis in focus.

563



In immersed interface methods, solid in a fluid presented by Sheng & Wang (2007), by
singular forces in the Navier — Stokes equations, f'ow jump conditions induced by the
singular forces directly enter into numerical sckemThe article is focused on the
implementation of an immersed interface methodsiimulation fluid — solid interaction in the
3D space. The method employs the method of comtiimes for the spatial discretization
and method of Runge Kutha the 4 order for the tintegration. The FFT — based Poisson
solver for the pressure Poisson equation is usedluid — solid interface is tracked by
Lagrangian markers.

A Lagrangian model for the numerical simulationflafd — structure interaction problems
is proposed by Antoci et al. (2007). In the metboth fluid and solid phases are described by
smoothing particle hydrodynamics: fluid dynamicssiadied in the inviscid approximation,
while solid dynamics is simulated through an inceetal hypoelastic relation. The interface
condition between fluid and solid is enforced bguitable term, obtained by an approximate
smoothed particle hydrodynamics evaluation of daser of fluid pressure. The method is
validated by comparing numerical results with latory experiments where an elastic plate
is deformed under the effect of a rapidly varyihgd flow.

The newly developed immersed object method is ptedeby Tai et al. (2007). Parallel
computation of unsteady incompressible viscous s$laround moving rigid bodies using an
immersed object method with overlapping grids iwet. Approach to parallel calculation is
presented by Tai et al. (2005). Newly is extended3D unsteady flow simulation with fluid
— structure interaction, which is made possiblecbgnbining it with a parallel unstructured
multigrid Navier — Stokes solver using a matrixee fimplicit dual time stepping and finite
volume method. An object mesh is immersed intoflive domain to define the boundary of
the object. The advantage of this is that bodieslofost arbitrary shapes can be added
without grid restructuring, a procedure which igeaftime — consuming and computationally
expensive.

How is evident from this research study, all taiesfluid - elastic structure interaction are
solved as coupled. To achieve better numericalilgyabnd shorter time computing they are
used special algorithms.

Another of possibilities for achievement this igpbgation of the new type of boundary
conditions for contact between continuum and ligWigproach is based on the application
the expansion the solution according to eigen shapeontinuum vibration. The authors are
many years interested in the possibilities, hopossible to separate the continuum and liquid
from each other. They proved that this is posditmé¢he solid body. The summarizing results
more then sixth year’'s research are presented lohygo & Malenovsky (2004) and also
Malenovsky & Pochyly (2004). The possibility forpsgation is based on the approximation
of solution for velocity and pressure functionstie form of convolutory integrals. In this
contribution is presented application on an elastiatinuum. For simplicity and possibility of
software performing was chosen cantilever beam withular cross section vibrating in
water. The objective is to determine the expressimn local matrices of added mass and
damping of liquid and suggest algorithm for solntthe elastic structure — liquid interaction.

Similar model sample is presented by Levy & Wilking1976). Vibration a shaft in water
is solved as coupled problem. Authors are mainlyused on the determination of added
mass. Only the potential flow is taken into accoaimd the water is considered as ideal. The
finite element method for the both structure anditi is used.
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Introductory study to the solution of this problésnpresented by Pochyly & Malenovsky
(2008). In this contribution are derived the express for added mass and damping. General
approach to the analysis of coupled vibrations anbevhich is submersed in a liquid is
presented by Pochyly & Malenovsky (2008). The biokbal and real liquid is taken into
account. The expressions for added mass and darapnderived from the point of view of
application FEM.

2. Mathematical model

The way in order to draw up the mathematical anmdpdational model will be demonstrated

on the vibration of the bar in liquid. It is podsilio generalize it to the case of vibration of
any elastic continuum in liquid, eventually in asiyrrounding. The target is to determine the
relations of local matrices of additional effectg the liquid. The motion equation for the

finite element of the bar — the free undamped wibnan liquid has the form:

MRk == u fds (1)
S
and also according application the FEM is
(). =pn
_ 2)
(6) =Myn,

The above mentioned nonreversible stress tensamimympressible liquid has the form:

I_Iij :2’7191‘
L 1fo 0 ®
"o2(ox, ox

The principle of the solution is based on the madaisformation of the bar. Let's extend the
state vector of the bar with the help of eigenvexton this principle. Then, with this
presumption, the following is valid:

f (Z’t) =V (Z)q| (t) (4)

Further, it is important to define the boundary ditions for liquid. On the boundaries of the
area, filled with liquid, the following is valid:

S:¢=7
r:p=0 5)
,:¢=0
,:¢ =0

Establishing new defining relations for velocitiasd pressure in the form of convolutory
integrals is a very important step for drawing umathematical model. With establishing
velocity and pressure functions depending on thenab bar coordinates it is possible to
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separate continuum and liquid movements. The ugladi liquid and the pressure in an
arbitrary place are defined by these relations:

t
pJ-ﬁkthk d
0

t
j g r)dr
0
where a,, B, are new variables. The boundary condition for Itheid velocity on the bar

surface using this presumption has the form:

(6)

t

'[a'n (t - T)Cﬁ. (T)d T =V (Z)QI; (t) (7)

0

Now we can analyze the separated liquid. It is s&@e/ to mention in this context, that the
shape of the continuum vibration doesn’t only iefiae the velocity boundary conditions, but
also by this the geometrical configuration is giventhe given instant time. The modal

features of the vibration continuum in the surrangd, in general, depend on the vibration
amplitude for the given shape of vibration. Letssame the liquid is real and incompressible.
The initial Navier — Stokes and continuity equasidor a linear task have this form:

o oM,  ap
ot o0x;, 0%
5 (8)
p_ck =0
0X,
The following is valid in the finite dimension sgaasing Bezier body features:
Ao -Ba+Cp=0
P (©)

Da=0

The solution is possible to suppose regarding Haeacter of the differential equation in this
form:

e=a,0+a,(t)

(10)
B=P,0 +B,0+ps(t)
We obtain after the substitution (10) into (9) awith respect to boundary conditions:
A0 +0,)-B(ad+a,)+C(pJF +p ) =—F5 1,0 wn

D(e,0+a,)=f,0

We obtain the next equation comparing elementh@fgeneral Dirac function derivation in
the motion equation and the general Dirac functienivation in the continuity relation:
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Aa, +Cp, =-f,

12
Da, =-f, (12)
and the next:
-Ba, +CB, =, (13)
Hence the pressure functig) is determined:
p,=-C'f,+C'Ba, (14)

The velocity and pressure functions are calculaadé@r substitution of the boundary
conditions for the instant shape of vibration. Netihg the influence o&,and B, functions

the following is valid for the velocities and prasss for thel " shape of vibration:
¢=a.q
p=Bq *+5,4

Now it is possible to proceed with composing loo@trices of additional effects by the
liquid. We obtain the next equation by the subsotuof relations (15) for the velocities and
pressure into equation (1) using egs. (2) and (3):

(15)

. . . . oa,, ., 0ay, | .
mr” ) kg :_é[ui{[’lq +,32|C|| +ﬂ|(ﬁl+a—);qu| :Idsg (16)

We obtain this formula with the presumption tha #olution develops into the free vibration
form i.e. the substitution of relation (4):

a alml + a alnl

myr by + kg :—_[uiﬁllvﬁlrj"dse— .[ui[’gz' +,7'( 0
S S Xn

e e

var;dse (17)

m

Hence it is obvious that local matrices of additibeffects by the liquid for thé™ shape of
vibration are determined by these equations:

m =] up ' dg
S

— aallml % il
hij __S[ui|:ﬂ3 +,7|( axn + axm jj|vl| d§

(18)

It is evident, that real liquid has influence onsmand damping.

3. Model sample

The model exercise is a cantilever bar in liquidisTmodel was chosen with regard to the
possibility of comparing with an experiment. Schewfi¢his is on the Fig. 1. The geometrical
properties are presented in table I. All the dinnems are in millimeters.
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Fig. 1: Scheme of the model task

4. Experimental analysis
For verification the mathematical and calculatingd®l was provided the experimental

analysis. Experimental kit consists from the cangr steel tube (beam) which is submersed
into liquid, in this case into the water. Propestod the beam are presented in Tab. I.

Tab. I: Properties of the beam

Length LO [mm] 1100
Inner radius RO [mm] 16,85
Outer radius R1 [mm] 17,85

Vessel with the water is also a tube with differdi@meters. On the whole the 5 vessels
was manufactured, but in this contribution are @nésd some results only from the 3 types.
Properties of these vessels are evident from Tabldterial of vessels was chosen plexiglass.
Through shine material was chosen for the possibili control the water level to which is
beam submersed. Outer vessel was stiffened dunmgxperiment, as possible to achieved
highest stiffness. This condition is necessary dgehfor the zero velocity of liquid on the
outer surface. On the other hand, how was evidem the experiment, this requirement is
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very difficult to realize. The whole arrangementtioé experimental kit was such as the free
end of beam was close the bottom of outer vessel.

Tab. II: Properties of the vessels

Type of vessels 3 4 5
Inner radius R2 [mm] 35 50 105
Outer radius R3 [mm] 40 55 110

On Fig. 2 is a view on the vessels and on Fig.88general view on the assemblage of kit.

Fig. 2: View on the outer vessels
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Fig. 3: General view on the assemblage of the kit

As an exciter was chosen the harmonic exciter §peel & Kjaer 4824, whereas the
suitable point on the upper part of beam was chéseexcitation. It is evident from fig. 4 the
connection between exciter and beam. How is algteatfrom this figure, the exciter is free
— hanged, whereas the moved part of exciter isdfwéh the excited beam. Direction of
excitation was not changed during the experiment.

570



Fig. 4: Excitation the beam

The two acceleration sensors were chosen for regpiitie data of vibrating beam. The
both are type Briel & Kjaer 4374 and were cluedh® inner surface of beam near the free
end, before the closing the tube.

Evaluation of experiment

Only the eigen frequency of submersed beam in thienmwas evaluated during the first
stage of experiment. The beam vibrates near cehpargtion with relatively small amount of
vibration. Only the results and comparison of tleisperiment and calculation (eigen
frequency) are presented in this contribution. @a whole, the 11 measurements were
provided with the height of water from 0 to 1000 muith step 100 mm. For the first shape of
vibration the frequency the bandwidth 10 - 30 Hzwhosen and 90 - 140 Hz for the second
one and the both with linear changing the frequesfagxcitation (constant acceleration). The
time of increasing the frequency was chosen 32 shi® both shapes of vibration. It means
that the angular acceleration for the first shape +0.62E Hz/s and for the second shape is
a =1.562 Hz/s. Only for illustration is on fig. 5 drawn pEmse for the first shape of
vibration in the same direction as was excitatibme height of water vas 1000 mm and tube
Nr. 3 was chosen.
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Fig. 5: Time dependant acceleration

From the time dependant acceleration was calculdtedFourier spectra. The systems
Briel & Kjaer HW — 3560D Pulse and Bruel & KjaeWS- 7700 Pulse Labshop were used
for the recording of data and numerical treatmdraazelerations. Only for illustration is on
fig. 6 drawn the Fourier spectra, corresponds éaithe dependence which is drawn on fig. 5.
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Fig. 6: The Fourier spectra

On behalf of identification the maximum of amplitudn the Fourier spectra and the
frequency bandwidth near the resonance peak wasndeed the eigen frequency and modal
damping for given shape of vibration. In this cdmition is presented the comparison only
the eigen frequencies. On figures 7 and 8 is ptedethe comparison for the first and the
second shape of vibration. In the legend the aliien ,exp“ means that the results
concerned to the experiment and abbreviation ,cah&fans the results concerned to the
numerical solution.
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Fig. 7: Comparison for the first shape
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Fig. 8: Comparison for the second shape

5. Computational analysis

The results of the model task are only for mattef —fact purposes and that is to present the
possibilities of computational modeling. The whalealysis is carried out only for the first
and the second shapes of vibration. The velocity ressure field were calculated for the
cases of liquid at a height from 0 to 1000 mm vgtbp 200 mm. The task is symmetrical
hence the velocities are calculated only on oné-hgllane. The vectors of velocities on the
beam surface correspond to the chosen shape ddtigibr Software performing and all
calculations were done in program system MATLAB.

For the software performing are used curvy — linear— ordinates. Transformation
relations are presented in the appendix. For thaiso of the Navier — Stokes eq. is used
Finite Volume Method (FVM) and for the continuityg.eFinite Difference Method. (FDM)
This combination was chosen to achieve the besenuaal stability of numerical solution. It
is necessary to note that all possible combindietwveen FVM and FDM methods. Also it is
necessary to note, that the both methods are sseallacations.

The Bezier body is used for the approximation efgeometrical configuration and for the
also for the approximation of velocity and presswaution. The expressions for an
application see the appendix.
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6.

Conclusions

In this contribution is presented, new approachth® composition of local added modal
matrices of mass and damping of liquid. They asu®ed and presented, two models of
liquids, ideal and real. For ideal liquid, the tensf reversible forces is not included. It is
possible to use, the presented approach to theimglufor the continuum with large
displacement and large constrains.

The general algorithm for numerical analysis isodlews:

1.
2.

3.

Whole range in frequency or time domain is divid®ad finite number of steps.

It is provided the modal behavior analysis of indinal continuum (without liquid) for
finite number of steps of geometry configuration.

Analysis of individual liquid with the boundary aditions which are given by the chosen
eigen shape of vibration. This step is repeated th# finite number of eigen values is
achieving. For each step, the velocity and presBeie for given continuum position, is
obtained.

On behalf of velocity and pressure field on conimusurface are calculated the added
matrices of liquid influence. Also the global addeddal matrices for given shape of
vibration and given vibrating position of continuware composed.

Interpolation analysis of individual continuum withcluding the global matrices from
analysis of individual liquid (step 4) is used digrinumerical solution.

They are evident the following conclusions from ttemparison the experimental and

calculation analysis (see figures. 7 and 8):

Relatively good agreement between the experimethtnamerical solution is evident for

the form of dependence of eigen value on the hefhiater.

For the both shapes are evident lower values ®mtimerical solution. It can be caused

by the following reasons:

a. The Fourier transformation is valid for the permdsignal. In our case the
measurement signal was transient with the varidtdguency of excitation. The
Fourier transformation is not right for this anasydNext experiment can be done by
smaller angular acceleration and smaller forcexoitation.

b. It was evident from experimental analysis, that thgen frequency in the two
directions are a little bit different and both amunded.

c. Mathematical and computational model is not congalefor calculation the added
mass and damping. The functiegsand g, are not included for the calculation of

added effects.
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Appendix
Base functions

3 2x
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_oo2x X
b= x- 20
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x> X
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E E

2x°2 2%
U, ( X)

Transformation relations from the Cartesian todhery — linear co - ordinates
0X
C = ak _X'k
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Relations for the normal and rational Bézier 3Dyagplication
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