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3D NUMERICAL MODEL OF AN ELLIPSOIDAL PARTICLE
COLLISION WITH A ROUGH BED

N. Lukerchenko?!, S. Piatsevich!, Z. Chara?, P. Vlasak*

Summary: The paper deals with 3D numerical model of an ellipsoidal particle
collision with rough bed. The stochastic method of the contact point is based on
the concept of contact zone. The translational and rotational particle motions are
taken into account. The two — parameters (restitution and friction coefficients)
system of the impulse equations are used. The dependences of values of the
particle translational and angular velocities immediately after the collision on the
values immediately before the collision are obtained for two collision patterns:
impact with slip and impact without slip. The model can be used, particularly, as
the part of the ellipsoidal particle saltation in channel with rough bed.

1. Introduction

The numerical models of the particle saltation in the channel with a rough bed suppose
usually a spherical shape of the particle (e.g., Nino & Garcia, 1994; Lukerchenko ef al., 2004,
Lukerchenko et al., 2006). This way simplifies the problem, but does not allow the studying
some important details of the phenomenon.

It was shown by experiments of Nino & Garcia (1998) dealing with a saltation of sand in
an open channel that “elongated shapes colliding with the bed at the proper orientation seem
to result in higher particle angular velocity than in more spherical shapes”. This property can
be modelled only under the condition that the particle shape is non-spherical.

2D numerical model of the ellipsoidal particle saltation and of the ellipsoidal particle
collision with rough bed were developed in Lukerchenko et al., 2005(1), 2005(2). The present
work is devoted to the development of the 3D numerical model of the ellipsoidal particle
collision with a rough fixed bed.

The shape of the particle is an ellipsoid with semi-axes a, b and c. This shape allows using
the same formulas for elongated particles and for particles of nearly spherical shape and
investigating the effect of the particle elongation on the saltation parameters.

Two stages can be distinguished in the particle saltation process: the particle movement in
the stream of water and the particle-bed collision. The second stage, i.e. the random process of
the particle impact and rebound from the bed is studied in the present paper. A numerical
stochastic model of particle-bed collision was developed.
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The particle translational and rotational velocity components immediately after the
collision were expressed as a function of the particle translational and angular velocity
components immediately before the collision for two collision patterns: impact with slip and
impact without slip. The pattern depends appreciably on the particle translational and angular
velocity before the collision.

2. Contact zone

The contact point is the point of the particle surface that is in direct contact with the bed
during the particle-bed collision. Its position has a random nature. The contact zone is the set
of all possible contact points.

The particle translational velocity v (vx,vy,vz) and angular velocity @ (a)la)‘a)) as well

as the coordinates of the ellipsoidal particle centre of gravity O immediately before the
collision (see Fig. 1) are assumed to be known from the calculation of the particle motion in
the channel.

z bed level

Fig.1. Coordinates of the ellipsoidal particle in channel

Let us suppose that the moving particle contacts the channel bed at one point during the
collision (it follows from the assumption of the bed geometry regularity). The particle-bed
contact at the point B corresponds with a central impact and the contact at the point 4
corresponds with a tangential impact.

In the moment of collision points on the segment ADL are in the particle shadow. The
probability of the contact for points on the segment is very small; the contact is possible only
for a very large bed roughness. Let us suppose that the points of the ellipsoidal segment 40,8
are the points in which the particle can contact the bed, i.e. this segment is the contact zone.
The contact point for each collision is chosen from the contact zone as random variable using
a random-number generator.

3. Definition of the co-ordinate systems and particle position

Let us consider two orthogonal systems of coordinates (see Fig.1). The first of them, O’xyz
(system 1), is firmly connected with the channel bed. The second one, O&(n (system 2), is
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connected with the moving ellipsoidal particle and is movable. The position of any ellipsoidal
particle in the channel can be unambiguously determined by the coordinates of its centre and
by the Euler’s angles. The vector Ro(x,, Vo, Z,) 1s the radius — vector of the point O in the
system O’xyz.

The base vectors and coordinates of the two systems are expressed using the Euler’s
angles ¢, y, 0 by following formulas

= (cos@cosy —siny cos@sin )i + (cosy sin g +siny cos@cos)j + (siny sin (9)l€
é, = (—cos@siny —cosy cos@sin p)i + (—siny sing + cosy cosdcos @)/ + (cosy sin 6’)/? ; (D)
€, =(sinfsin @)i +(—sin@cosg)j + (cos 9)1?

] (cosy sin @ +siny cos @ cos @)e, + (—siny sin @ + cosy cos & cos p)e, + (—sin & cos )e; (2)

= (cos@cosy —siny cos@sin p)e, + (—cos@sin iy —cosy cos@sin p)e, + (sin @sin p)e,
= (siny sin #)e, + (cosy sin B)e, + (cos O)e,

& =(cospcosy —siny cosdsin@)(x —x, )+ (cosy sin @ +siny cosdcos p)(y — v, ) + (siny sin)(z - z,))
¢ =(—cosg@siny —cosy cos@sin @)(x —x, )+ (—siny sin @ + cosy cos @ cosp)(y —y, )+ (cosy sin@)(z —z,)

17 =(sindsin@)(x—x,)+(—sinfcosp)(y —y,) +(cos0)(z —z,)

3)
x =(cos@cosy —sin cos @sin p)& + (—cos @ sin i —cos i cos @ sin ¢)g + (sin sin @)1 + x,,
y =(cosy sin @ +siny cos & cos )& + (—sin i sin ¢ +cosy cos & cos ) +(—sinfcosp)n+y,, * 4
z =(siny sin 8)¢ + (cosy sin )¢ + (cos @)+ z,,

Let us denote the coordinates of the base vector j in the system 2 as

Je =(cosysing +siny cosfcos@), j. =(—sinysing+cosy cosfcosp); j, =—sindcosp.

4. The condition of the particle — bed collision

The bed roughness is k; (see Fig. 2). The particle contact with the bed is defined by the
following way. The random generator chooses the value k's in the range (0; k;). During each
step of calculation of the particle motion in fluid, at first the lowest point M of the ellipsoidal
particle (see Fig.1), i. e. the point with minimal value of the coordinate y, is determined. For

yu fulfilling the condition y,, < k., the particle-bed collision is calculated. The coordinates of
the lowest point M of the ellipsoidal particle must comply with the following two conditions:

(1) the point M belongs to the particle surface
Eu W<
a2 bA/I2 242 _1 = 0 2 (5)

where a, b and c are the semi-axes of the ellipsoid, and

(2) the external normal n to the particle surface in the point M and coordinate vector j are
anti-parallel vectors: n=-k j, k > 0.

The equation of the tangent plane to the ellipsoid in the point M is

T

=0,

+(n—-n
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the coordinates of the vector n are [262” , 252’” , 2772’” ) The condition N = - k j using Eq. (2)
a c

can be written for the components of the vector as

2 2
Ey = —%(cosy/singo +siny cosdcosp); &, = —%(—sint//sin(o + costy cosdcos@);

2

My = —%(—sin@cosw)

_(jgaz,jgbz,jncz)
\/azjg +% )2 el

The coordinates of the sought point M are M = (§M NAVN N ) =

Then taking into account Eq. (4) the condition of the collision can be written
L _cbia v ie’)
v =
\/a2j§ +b*ji+c?,

+y, <k.. (6)

5. The contact zone

For modelling of the particle — bed collision it is necessary to calculate coordinates of the
contact point. The contact zone is bounded by the point 4 and B (see Fig.1). The coordinates
of the point 4 must satisfy the three conditions.

(1) The point A4 is the point of the ellipsoid surface, see Eq. (5)

2 2 2
%+igﬂg—bo, (7)
264 264 214
a’ bl

perpendicular to the velocity vector: (7i-¥) =0, or

28 2¢
y,22A 4y Z2A4y
éaz §b2 ”c

(2) The normal vector ﬁ( jto the tangent plane at the point A4 is

2n,

2

=0, (8)
and this normal vector is located in the plane of the velocity vector and the coordinate vector
J (ﬁ,ﬁ,]’): 0 or

i—ﬁ(j”V; _ngr;)—i'%(jéVﬂ _jriVé)—i_Z_;(jJVé _jéVi): 0. ®)

The system of Egs. (7)-(9) has two solutions that correspond to two point 4; and A>, located
symmetrically on the ellipsoid surface

Al — _(Q=p’1) : AZ _ (q’pal) (10)

where
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Vn(chn _ang)_ (ngg _V;JE)
V.l c’ a’ (V Py 1 j
= , =——\V, S +V, —|.
P (Vﬂjf_Véjn) V{(ngﬂ_Vrzji) 1 Ve “p "

2 2
b V.b

The correct point A is the point, which is closer to the bed, i.e. the point with smaller
coordinate y.

The calculation of the point B consists of two steps. During the first step the intersection
point B; of the velocity vector with the ellipsoid surface is calculated. Because the coordinate
yg; of the contact point cannot overcome the bed roughness k;, during the second step the
coordinate yp; of the point B; is
compared with the bed roughness
value k; (see Fig.2). If yz; < kj, the
intersection point B; is considered to
be the point B. If yg; > k;, the point B
1s transferred to the level £;.

The coordinates of the intersection
point B; must satisfy the following
conditions

l bed level 95312 4/312 77312 _
2 B2 e -1=0, (11)
Fig. 2. Calculation of the point B
OB, =kV, k>0, => & =kV., {p =kV., n, =kV,; k>0. (12)
Since
(Y:+pj:+J,) Y:+Dj:+J,

Y, (é:Az:é,Az:nAz):

Y, (é:Al’é/Al:nAl): —

the coordinates of the point 4 must satisfy the condition

Ya (é:A ’4’1‘1 2114 ) = min[yAl (§A1 ’éVA] ’nAI )’yAz (é:Az ’éVAz ’nAz )J '
The solution of the system of Eqgs. (11) — (12) is unequivocal

! v oy oy

\/54_;4_”

a’ b P

The coordinate y of the point B; is
JjV.+jV+jV
yBl(é:Blaé/BlanBl)z - i d A . 277 Vo

14 V |4
\/5+4+ U
aZ b2 CZ
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Ify, (531 NP )s k., the point B; is the sought after point B, otherwise the coordinates of

the point B must satisfy the following conditions

iz iBz + ch -1=0, (14)
yB(éBagBaﬂB):j;‘fB+j;§3+jq773+y0:ks’ (15)

(08.7.04)=0.

The last condition means that the points 4 and B and the velocity vector are in the same
plane given by the equation

&V =S eV, —n W Jens(C v —€ .7 )=0 (16)
The system of equations (14)-(16) has two solutions

—b +\b* —4a’c’

$s =(ka+ yng +xf, Cp=ang +f; 77(1 P = a ) (17)
where
2 2 2 2 2
a*: M—Fa_z—'—L b*:(ZKﬂ(K?-Fﬂ)_‘_ZOZBJ’ C*: %+ﬂ_2_ ;
a b c a b a b
a:_jf75+jn. _ Yo~k K:VfﬂA_Vn‘fA. ViVl
j§K+j§’ j§k+jg, V{ﬂA_Vqé,A, V;’ﬂA_Vryé,A

These solutions give two points B, ($,,¢ »n%)) and B, (&5,¢ 5.1%)), disposed on different
sides of the point 4. For the sought after point B the angle between the vector OB and

velocity vector is smaller. Let us consider the vectors OB(l)(ggB,g“ 2.n%))  and

OB(z) (&5,¢ 5 ,77(2)) , angles between them and the velocity vector

cos5 — (OBU),V) EV. + gBVg eV,
‘OBm \V\ \/gB TN Ll N
cos S, = (OB(z),V) é:BV +§BV4 +771$92)V;7

‘OB(z)

R R e N e

If cos §,>cos & ,, then the point B(;) is the sought otherwise point B, else the point B is point
B 2)-
Let us now calculate the secant plane which passes through the point 4 and B and which
intersects the ellipsoid. Its normal is in the plane of the vectors V and J , which equation is
KE+L+Mn+N =0,

where K’, L’, M’, N’ are constants. The particle centre O does not belong to the secant plane,
hence N’ # 0 and the plane equation can be written as

KE+LE+My+1=0,

and the system of equations for the definition K, L and M can be written
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K¢, +LE, +Mn,+1=0, (18)

Ké,+ LS, +Mn, +1=0, (19)
(i.7.7)=0.
The last equation in detail is
K(j:Vn _jer:)+L(jnV§ —ng”)+M(j§VC _jCVf): 0. (20)
The solution of the system of Egs. (18), (19), (20) is
K=A_K; L:ﬁ; M=A_M, (21)
A A A
where
§A é/A 7,4 -1 4/,4 74
A= 53 gB U ; AK =|-1 §B Ur 5
JVy=0Ves JVe=idVys JVe—iVe O JVe=idVy JdVe—JcVe
¢, -1 uyy ¢, ¢ -1
A =| & -1 Ur: s Ay = Ss Cs -1
Iy =0V 0 Ve =JVe IVy=0Ves JVe—Jdy 0

The secant plane dissects the ellipsoid surface to two regions. The lower one is the contact
zone of the particle with the bed.

Since the particle — bed collision is the random process, also the contact point is a random
variable, and it is chosen from the contact zone using the random number generator. The
coordinates of the point at the ellipsoid surface can be written as

{f* =acosy cosp’; ¢ =bsiny’; 1 =ccosy sing ,
where v~ €[0,27), ¢ €[0, 7).

The parameters 1//* and go* are chosen from these ranges, respectively, using the random-

number generator. Then it is verified that the obtained point belong to the contact zone. In this

case, the found point and the point O are disposed on different sides of the secant plane or the
found point belongs to the secant plane. Therefore,

sign fICE, C, 1) # sign (0(0,0,0)),
where
JCE &on))=aid + &+ oon” + a5, {0(0,0,0)=0s,
1e.
(0,8 +C +am” + a3)* a3<0. (22)

6. The collision coordinate system

Let us define the collision coordinate system Czno, in which the impulse equations can be
written in the simplest form. The coordinate system Crtno is right and orthogonal with the
origin in the contact point C. The axis Cn is normal to the ellipsoid surface in the point C and
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directed inward. The axis C7 is in the plane of the velocity vector and the axis Cn. The unit
base vectors of the coordinate system Crno are

ﬁ(gn’é/n’nn): _Egc’gc’ﬂf) > s
2BERED
a’ b’ c’
V,=nV.nV.-c VeV, —¢.V,
E((é:n’é/n’nn):(é,n . 77” : TZZ : *f *f : é/ )’
VER+ST +m,
z_.(g‘r’é,r’?]‘r) = (é/ann - é/nnoﬂ é:nna - fa‘nn’ ézaé,n - fné/a)’
Where é::r :é/nl/n _nan; é/:r :77an _anV,]; 77; :é:an’ _é/nl/n :

The relation between base vectors 1s

n=¢e+¢.e +ne; t=%5e+(.e +ne; o=45.e+( e +n.e; (23)
e=¢(n+8ET+E 0 e, = n+(.T+(,0; e,=nn+nt+n.oc. (24)
It is valid for the coordinates

n=¢(E-E)+ ¢ (C-Co)+mm—-nc);  [E=En+ér+éo+és
r=E(E-E)+ ¢ (¢ =& )vnn-n); (¢ =¢n+l o+l o+ (25,26)
(7:fa(§_§C)+§a(€V—§c)+ﬂa(n_77c); n=nn+nrt+n,o+n..

7. The collision calculation

Let us consider the second Newton's law and the equation of the torque in view:
mdV =Fdt, (27)
dL =Mdt =[r. x F di] (28)

where m is the particle mass, dV is the differential of the particle velocity, F is the impact
force, with which the bed acts on the particle, dt is differential of time. After the integration
of Egs. (27) and (28):

m7-v-)=1, (29)

I'-L =[rxI], (30)

where V" is the particle velocity immediately before the collision, ¥ *is the particle velocity

immediately after the collision, / is the impulse of the force F . The Egs. (29), (30) give in
the projections to the coordinate axes 7,7,0 :

m; v )=1; my:-v )=1;, my;-v.)=1,=0. 31)

n

T o)) ==r 1 J 0 -0 )=ro 1, T (0 -a))=ro I —r.1 (32)

[ n?’ n*

The condition /_ =0 is valid in the collision coordinate system. The equation for the
normal component of velocity is

Vi=—eV , (33)

n
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where e is the restitution coefficient.

The moments of inertia of ellipsoid relative to the axes parallel to the co-ordinate axes n,
7, o , which passes to the ellipsoid centre are J,, J;, J,. The moments of inertia of an ellipsoid
relative its principal axes are

1

A=J, :%m(bzvtcz); B=J, :gm(aercz); c=J, :%m(aerbz).

and the moment of inertia relative to an arbitrary axis A passed the body centre of mass can be
calculated using the formula

J, =A4%cos’ a+B*cos’ f+C*cos’ y,
where cos a, cos f, cos y are the direction cosines of the axis A. Therefore for the J,, J;, J,
J, = A8 +B +Cyyy J = A8 +B I+ Cly T, = A8+ B +C
Two different patterns of particle collision can exist according to the collision conditions:

- impact with slip, i.e. the particle slips along the surface of the channel bed during the
collision process;

- impact without slip, i.e. the tangential component of the contact point velocity (see Eq.
(34,2)) vanishes before the particle rebound, Lukerchenko et al. (2006) .

The impact with slip is possible, if the impulse acting on the particle during the collision is
I|=11,, (34)

where the friction coefficient f is an empirical constant and the Eq. (34) closes the system of
Egs. (31), (32), (33).

The impact without slip is possible, if the impulse acting on the particle during the
collision is |/,

T

< fI, and the tangential component of the contact point velocity vanishes

Vi =V +(ro —ro)=0 35)

n-—-o

and Eq. (35) closes the system of Egs. (31), (32), (33).

The system of Egs. (31), (32), (33) and (34) or (35) consist of eight equations for eight
unknown variables V,,” V.  V,', w,', o, @, I, I. The solutions of them are

Vi=—eV ; V=V +fle+O)V ; V' =V.; I =—(e+D)mV,; I.=f(e+l)mV, ;

1 - 1 - DmV-
o = o — 1Y Zer“K’ ; wizwr—%; w;=wa+%(ﬁ’cg+rc,)

n T o

n
mr., \ B

a);r :(rC_o-_i_ Jn jA_*_(M_FV_TJ, ]n :_(e_'_l)man’ IT - _ Jn [A* _a)nj’

Yo Migle, )B mre,Jeo It

n n

V= el V=V - (A*—“’J; R R

where
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* Janna)n_ + JnJO'a)n_ + JO'VT_ * JarCo- + JnJa + Jann )

rCn

A +m(e+l)rCTVn_ +J,0, B

oo

e mre,r'es e

n

o ero‘ rCn rCo‘

The obtained vectors of translational and angular particle velocities immediately after the
collision must be calculated in the coordinate system O’xyz and can be used as initial
conditions for the next particle trajectory calculation.

8. Conclusions

3D numerical model of the ellipsoidal particle collision with the channel rough bed is
developed. The concept of the contact zone, i.e. the set of the particle surface points, which
can be in contact with the bed during the collision, is used. Since the particle-bed collision is
the random process, the contact point is chosen from the contact zone as random variable
using the random number generator. Then the values of the translational and angular particle
velocity immediately after collision is calculated based on these values just before the
collision using the impulse equations.

The presented model, which allows determination of the influence of the particle
oblongness on the saltation parameters, can be used as the part of 3D numerical model of the
ellipsoidal particle saltation in the channel with rough bed..
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