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Summary: The paper deals with 3D numerical model of an ellipsoidal particle 
collision with rough bed. The stochastic method of the contact point is based on 
the concept of contact zone. The translational and rotational particle motions are 
taken into account. The two – parameters (restitution and friction coefficients) 
system of the impulse equations are used. The dependences of values of the 
particle translational and angular velocities immediately after the collision on the 
values immediately before the collision are obtained for two collision patterns: 
impact with slip and impact without slip. The model can be used, particularly, as 
the part of the ellipsoidal particle saltation in channel with rough bed.  
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Lukerchenko et al., 2006). This way simplifies the problem, but does not allow the studying 
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The particle translational and rotational velocity components immediately after the 
collision were expressed as a function of the particle translational and angular velocity 
components immediately before the collision for two collision patterns: impact with slip and 
impact without slip. The pattern depends appreciably on the particle translational and angular 
velocity before the collision. 

2.    Contact zone 
The contact point is the point of the particle surface that is in direct contact with the bed 
during the particle-bed collision. Its position has a random nature. The contact zone is the set 
of all possible contact points. 

The particle translational velocity ( )zyx vvvv ,,  and angular velocity ( )zyx ωωωω ,,  as well 
as the coordinates of the ellipsoidal particle centre of gravity O immediately before the 
collision (see Fig. 1) are assumed to be known from the calculation of the particle motion in 
the channel. 

 
Fig.1. Coordinates of the ellipsoidal particle in channel  

Let us suppose that the moving particle contacts the channel bed at one point during the 
collision (it follows from the assumption of the bed geometry regularity). The particle-bed 
contact at the point B corresponds with a central impact and the contact at the point A 
corresponds with a tangential impact.  

In the moment of collision points on the segment ADL are in the particle shadow. The 
probability of the contact for points on the segment is very small; the contact is possible only 
for a very large bed roughness. Let us suppose that the points of the ellipsoidal segment AO1B 
are the points in which the particle can contact the bed, i.e. this segment is the contact zone. 
The contact point for each collision is chosen from the contact zone as random variable using 
a random-number generator. 

3. Definition of the co-ordinate systems and particle position 

Let us consider two orthogonal systems of coordinates (see Fig.1). The first of them, O’xyz 
(system 1), is firmly connected with the channel bed. The second one, Oξζη (system 2), is 
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connected with the moving ellipsoidal particle and is movable. The position of any ellipsoidal 
particle in the channel can be unambiguously determined by the coordinates of its centre and 
by the Euler’s angles. The vector Ro(xo, yo, zo) is the radius – vector of the point O in the 
system O’xyz. 

The base vectors and coordinates of the two systems are expressed using the Euler’s 
angles φ, ψ, θ by following formulas 
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Let us denote the coordinates of the base vector j in the system 2 as 

.cossin);coscoscossinsin();coscossinsin(cos ϕθϕθψϕψϕθψϕψ ηζξ −=+−=+= jjj
 
 
4. The condition of the particle – bed collision 
The bed roughness is ks (see Fig. 2). The particle contact with the bed is defined by the 
following way. The random generator chooses the value k*

s in the range (0; ks). During each 
step of calculation of the particle motion in fluid, at first the lowest point M of the ellipsoidal 
particle (see Fig.1), i. e. the point with minimal value of the coordinate y, is determined. For 
yM fulfilling the condition , the particle-bed collision is calculated. The coordinates of 
the lowest point M of the ellipsoidal particle must comply with the following two conditions:  

*
sM ky ≤

(1) the point M belongs to the particle surface    
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where a, b and c are the semi-axes of the ellipsoid, and  

(2) the external normal n to the particle surface in the point M and coordinate vector  j are 
anti-parallel vectors: n = - k j, k > 0.  

The equation of the tangent plane to the ellipsoid in the point M is  
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the coordinates of the vector n are ⎟
⎠
⎞

⎜
⎝
⎛

222
2,2,2
cba

MMM ηζξ . The condition n = - k j using Eq. (2) 

can be written for the components of the vector as 
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The coordinates of the sought point M are  ( ) ( )
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Then taking into account Eq. (4) the condition of the collision can be written 

( ) *
0222222

222222

sM ky
jcjbja

cjbjaj
y ≤+

++

++−
=

ηζξ

ηζξ . (6) 

5. The contact zone 

For modelling of the particle – bed collision it is necessary to calculate coordinates of the 
contact point. The contact zone is bounded by the point A and B (see Fig.1). The coordinates 
of the point A must satisfy the three conditions. 

(1) The point A is the point of the ellipsoid surface, see Eq. (5) 
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and this normal vector is located in the plane of the velocity vector and the coordinate vector  
j ( ) 0,, =jVn

rr
 or  r
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The system of Eqs. (7)-(9) has two solutions that correspond to two point A1 and A2, located 
symmetrically on the ellipsoid surface 
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The correct point A is the point, which is closer to the bed, i.e. the point with smaller 
coordinate y. 

The calculation of the point B consists of two steps. During the first step the intersection 
point BB1 of the velocity vector with the ellipsoid surface is calculated. Because the coordinate 
yB1 of the contact point cannot overcome the bed roughness ks, during the second step the 

coordinate yB1 of the point B1B  is 
compared with the bed roughness 
value ks (see Fig.2). If yB1 ≤ ks, the 
intersection point BB1 is considered to 
be the point B. If yB1 > ks, the point B 
is transferred to the level ks. 
     The coordinates of the intersection 
point BB1 must satisfy the following 
conditions 
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Fig. 2. Calculation of the point B 
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the coordinates of the point A must satisfy the condition 
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The solution of the system of Eqs. (11) – (12) is unequivocal 
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The coordinate y of the point BB1 is 

( ) OBBBB y

c
V

b
V

a
V

VjVjVj
y +

++

++
=

2

2

2

2

2

21111
,,

ηζξ

ηηζξξηζξ . 

 5545



If ( ) sBBBB ky ≤
1111

,, ηζξ , the point BB1 is the sought after point B, otherwise the coordinates of 
the point B must satisfy the following conditions 
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The last condition means that the points A and B and the velocity vector are in the same 
plane given by the equation 
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The system of equations (14)-(16) has two solutions 
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These solutions give two points  and , disposed on different 

sides of the point A. For the sought after point B the angle between the vector 
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velocity vector is smaller. Let us consider the vectors ),,( )1(
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If 21 coscos δδ > , then the point BB(1)  is the sought otherwise point B, else the point B is point 
B(2)B . 

Let us now calculate the secant plane which passes through the point A and B and which 
intersects the ellipsoid. Its normal is in the plane of the vectors V

r
 and j

r
, which equation is 

K’ξ + L’ζ + M’η + N’ = 0, 

where K’, L’, M’, N’ are constants. The particle centre O does not belong to the secant plane, 
hence N’ ≠ 0 and the plane equation can be written as 

Kξ + Lζ + Mη + 1 = 0, 

and the system of equations for the definition K, L and M can be written 
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The secant plane dissects the ellipsoid surface to two regions. The lower one is the contact 
zone of the particle with the bed.  

Since the particle – bed collision is the random process, also the contact point is a random 
variable, and it is chosen from the contact zone using the random number generator. The 
coordinates of the point at the ellipsoid surface can be written as 

{ ******** sincos;sin;coscos ϕψηψζϕψξ cba === , 

where ),0[),2,0[ ** πϕπψ ∈∈ . 

The parameters ψ* and φ* are chosen from these ranges, respectively, using the random-
number generator. Then it is verified that the obtained point belong to the contact zone. In this 
case, the found point and the point O are disposed on different sides of the secant plane or the 
found point belongs to the secant plane. Therefore, 

sign f(C(ξ*, ζ*, η*)) ≠ sign f(O(0,0,0)), 

where    

f(C(ξ*, ζ*, η*))=α1ξ* + ζ* + α2η* + α3, f(O(0,0,0)=α3, 

i.e.  

                                                   (α1ξ* + ζ* + α2η* + α3)* α3 ≤ 0.                                           (22) 

6. The collision coordinate system 
Let us define the collision coordinate system Cτnσ, in which the impulse equations can be 

written in the simplest form. The coordinate system Cτnσ is right and orthogonal with the 
origin in the contact point C. The axis Cn is normal to the ellipsoid surface in the point C and 
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directed inward. The axis Cτ is in the plane of the velocity vector and the axis Cn. The unit 
base vectors of the coordinate system Cτnσ are 
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It is valid for the coordinates 
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7. The collision calculation 
Let us consider the second Newton's law and the equation of the torque in view:  

                                                                 dtFVdm = ,                                                         (27)  

                                                        [ ]dtFrdtMLd C ×==                                         (28) 

where m is the particle mass, Vd is the differential of the particle velocity, F is the impact 
force, with which the bed acts on the particle,  is differential of time. After the integration 
of Eqs. (27) and (28): 

dt

                                                               ( ) IVVm =− −+ ,                                                     (29) 

                                                              [ ]IrLL C ×=− −+ ,                                                     (30) 

where −V is the particle velocity immediately before the collision, +V is the particle velocity 
immediately after the collision, I  is the impulse of the force F . The Eqs. (29), (30) give in 
the projections to the coordinate axes στ ,,n : 

                          ( ) ( ) ( ) 0;; ==−=−=− −+−+−+
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              ( ) ( ) ( ) nCCnnCCnnn IrIrJIrJIrJ ττσσσσττττσ ωωωωωω −=−=−−=− −+−+−+ ;; .   (32) 

The condition 0Iσ =  is valid in the collision coordinate system. The equation for the 
normal component of velocity is 

                                                                  ,                                                          (33) −+ −= nn eVV
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where e is the restitution coefficient. 

The moments of inertia of ellipsoid relative to the axes parallel to the co-ordinate axes n, 
τ, σ , which passes to the ellipsoid centre are Jn, Jτ, Jσ. The moments of inertia of an ellipsoid 
relative its principal axes are 

( )22

5
1 cbmJA +== ξ ;   ( )22

5
1 camJB +== ζ ;     ( )22

5
1 bamJC +== η .  

and the moment of inertia relative to an arbitrary axis Δ passed the body centre of mass can be 
calculated using the formula 

γβα 222222 coscoscos CBAJ ++=Δ , 

where cos α, cos β, cos γ are the direction cosines of the axis Δ. Therefore for the Jn, Jτ, Jσ

;;; 222222222222222222
σσσσττττ ηζξηζξηζξ CBAJCBAJCBAJ nnnn ++=++=++=  

 Two different patterns of particle collision can exist according to the collision conditions:  

- impact with slip, i.e. the particle slips along the surface of the channel bed during the 
collision process;  

- impact without slip, i.e. the tangential component of the contact point velocity (see Eq. 
(34,2)) vanishes before the particle rebound, Lukerchenko et al. (2006) .   

The impact with slip is possible, if the impulse acting on the particle during the collision is 

                                                              nfII =τ ,                                                      (34) 

where the friction coefficient  is an empirical constant and the Eq. (34) closes the system of 
Eqs. (31), (32), (33).  

f

The impact without slip is possible, if the impulse acting on the particle during the 
collision is nfII <τ  and the tangential component of the contact point velocity vanishes 

                                                    ( ) 0=−+= ++++
nnC rrVV ωω σσττ                                               (35) 

and Eq. (35) closes the system of Eqs. (31), (32), (33). 

The system of Eqs. (31), (32), (33) and (34) or (35) consist of eight equations for eight 
unknown variables Vn

+
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The obtained vectors of translational and angular particle velocities immediately after the 
collision must be calculated in the coordinate system O’xyz and can be used as initial 
conditions for the next particle trajectory calculation. 

8. Conclusions 

3D numerical model of the ellipsoidal particle collision with the channel rough bed is 
developed. The concept of the contact zone, i.e. the set of the particle surface points, which 
can be in contact with the bed during the collision, is used. Since the particle-bed collision is 
the random process, the contact point is chosen from the contact zone as random variable 
using the random number generator. Then the values of the translational and angular particle 
velocity immediately after collision is calculated based on these values just before the 
collision using the impulse equations.  

The presented model, which allows determination of the influence of the particle 
oblongness on the saltation parameters, can be used as the part of 3D numerical model of the 
ellipsoidal particle saltation in the channel with rough bed.. 
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