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STUDY OF DAMPING ELEMENT SHAPE INFLUENCE ON NATURAL
FREQUENCY

P. Lo34K , E. Malenovsky "~

Summary: This paper deals with numerical simulations of hioear structure
vibrating. It was created a simple model of oneedided beam with the dovetail
groove and the damping strap in it. There was ccintacluded between side-
walls of the strap and the groove. Main aim wadeatermine how the strap shape
influencing the natural frequency and the dampiogfficient. It was observed a
time-dependency of the displacement. This signalasaverted to the frequency-
domain by FFT algorithm. In this Fourier's spectrumas easy to determine the
response frequencies. The damping coefficient vedsrmined pursuant to the
resonance curve bandwidth in certain distance. Kswperformed several
simulations with various parameters, and resultsengotted to graphs.

Introduction

Bladed disk is a continuum. That means the numbetegrees of freedom is infinite,
therefore the number of natural frequencies is aiBnite. The expressive oscillations occurs
while the excitation frequency is equal to so chpeed which is defined by ratio of natural
frequency to the number of nodal diameters in gmaite mode shape [1]. In bladed disk this
frequencies even depends on the number of bladesitially on the number of cyclic
sectors. Many resonance states occur when turbigiiting up. It can be happened, that the
operating state will be close to one of these rasoa state. Expressive vibrations are
shortening disk’s lifetime.

It exists several ways to damp the vibrations. dme cases a wire or several wires
passing through the holes in the blades can be itssdot suitable in high pressure stages of
steam turbines, because the wire is impedimenhdosteam flow. It is better to locate the
damping element in rotor end ring. Mostly used dagp@lement shape is the strap which is
placed in the dovetail groove. Strap shape is ddfiny these geometrical parameters: middle
widthb, high hand side-wall slope anglg (Fig. 1), they are influencing dynamic behavior
of whole bladed disk. Maximal vibration damping,thre particular operating state, can be
probably obtained by suitable choice of these patars. Damping quantity and relative
motion, between the damping strap and the dovgtaibve, hang together. Frictional force
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value in the contact surface is given by disk ditemeangular velocity of the disk and t
strap mass. This mass is given by material dengiigidle width and high of the strap. T
high is influencing theontact pressure value in additional, becauseeihigh is changed, tt
contact area is changed too. Modification of tlie siall slope angl¢ doesn’'t change the
strap mass, but change the area of contact sutfacethe normeforce value, and frictione
or tangential forces, are influenced

Fig. 1: Dimensios of damping
elemen

This paper deals with the case that only one getraktparameter (ancg) was

changed. High and middle width was kept. Anguldoeigy of the disk w which affecting
the centriugal force was changed too. The problem was salvélde time-domain. The beam
was excited by the shock lo

2. Computational model

2. 1. Model of geometry

The problem was solved in the ANSYS softw It would be difficult to comput
response of whelbladed disk with bandage. On this accoit was created very simplified
model and the yhamic behavic was tested on this model. It was @ide fixed beam wit
the dovetail groove anthe damping strap in (Fig. 2). There was a contact modelbetween
the strap and the groove s-walls. In bladeddisk, the strap is pressed to the groove
walls by pressure which is evoked by centrifugal forcEsis effect was supplied by tl
pressure defined on the upper strap face. Thisspresdepends « strap mass, angul
velocity and diameter of the fictive distParticular dimensionsvhich are staying constal
are in tab.1Side wall slope angl¢ was variable.

Fig. 2: Model of geometry
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Tab. 1: Model dimensions

length of model I 310 mm
width of model b, 110mm
high of model h, 30 mm
middle width of damping strafb 35 mm
high of damping strap h 12 mm

2. 2. Model of material

The bladed disk has been made of steel. Thusstswpposed that material of this model
was steel too. It was presumed that area of liekstic behavior will be not exceeded, thus
selected material was linear isotropic. Young's modE was selected = 2.1e5MPa and
Poisson’s ratiqu = 0.3. They are the most common steel constants. Inlgmbwhere the
mass matrix is in equations, the material densityto be defined, thys7.85%-9t. mm>.

2. 3. Generating the mesh

Because the following simulations can be time-camag, it was needed to create model
with coarse mesh in order for decrease the numbelegrees of freedom. Of course, the
coarse mesh does not to produce accurate resutt#) his paper was observed the global
dynamic behavior. Particular quantity (for exampmlaantity of displacement) was not
examined. Mesh was generated by structural lineanents SOLIDA45.

2. 4 Model of contact

Between the side-walls of the damping strap andgtbeve was created the contact. The
side-walls of the damping strap were meshed by TEBR® and the side-walls of groove
were meshed by CONTAL173. The coefficient of frintidepends on the relative velocity of
the surfaces in contact. In the ANSYS softwaredghsrimplemented the model of contact,
which express this dependency as follows:

u

U= Ug <1 + (—S - 1) exp(—D.vrel)> 1)
Hi

Where y, is the static coefficient of frictiory, is the kinetic coefficient of frictionD is

decay coefficient and,.; is relative velocity of the surfaces in contact.

This model presents a part of the disk bandagédy iwiin the high pressure stage of the
steam turbine. There is a superheated stem imits Detween contact surfaces was supposed
a solid friction. Parameters describing contact iardab. 2. A plot of friction coefficient
dependency on relative velocity is in Fig.3.

Tab. 2: Contact parameters

static coefficient of friction e 0.7
kinetic coefficient of friction [y, 0.6
decay coefficient D 0.8
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Friction coefficient dependency on relative velocity
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Fig. 3: Friction coefficient dependency on relatixelocity

3. Boundary and initial conditions

The beam was fixed on the one side. It is showRign 4. Initial conditions present the
state of the beam at tinte= 0s. It was presumed, the beam is in quiescence state.

In the bladed disk, the damping strap is pressethdoside-walls of dovetail grove by
centrifugal forceF,, which depends on the disk angular veloeityand the disk diametet
and the damping strap mass. In this simplified catagonal model this effect was obtained

by applying pressure on the upper surface of tmepitag strap. The pressure was computed
using equation (2).

o
po=-—""1~ 2)
(b B taﬁ <p)

Where thep, is pressure, witch supply the centrifugal foreeis the angular velocity of the
disk, d is disk diameterp is material densityk is the damping strap high,is middle width

and ¢ is the side-wall slope angle (see Fig. 1). Theutation was repeated with various
angular velocities.

4. Excitation and simulation

This problem has been nonlinear by reason of irechhe@ contact into the model. On this
account it is impossible to talk about natural treqcies, because frequency in the nonlinear
structures is depended on the deflection. It'ydrdquency whereat the structure oscillates
by explicit amplitude. Modal analysis is applicaldaly on conservative or weakly non-

533



conservative systems. To be possible to asses®fteet of the anglep change to the
“natural” frequency, it was presumed small deflectabout balanced state. The problem
linearized. It was observed the time dependencthefdeflection on the end of the be:
Using the Fourier transformvas obtained Fourier's spectrum witch wasalyzed The model
was excited by shock load. It's time duration \Qe-4s and magnitude of forcwas 1000.
The loads were applied on model as two forces getsnis shown in Fig. !

Fig. 4: Boundary condition

F/2

Fig. 5: Applying loads

Time of simulation wasdl The cutside structural and thener material dampir coefficients
was kept zero, Thus it wagsossible to observe the damping effect evoked bglyriction
between contact surfaces. The resp was observed in point witch iis Fig.5 lebeled asS. It
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was observed the displacement in the transversetitin -direction). The solution was
repeated with various values of the side-wall slapgle ¢ and angular velocityw. The
values of these parameters are in Tab. 3 and Tab. 4

Tab. 3 The side-walls slope angle dimensions
¢ [°]
20
25
30
40
53
70

OO~ |WIN]|F

Tab. 4 The angular velocities values

o [rad s']
1
50
78
157
236

QB [WIN|F

5. Modal analysis of conservative model

To identify the individual response frequenciestlre Fourier's spectrum, the modal
analysis was computed. Modal analysis was perforaored linear model. It was computed
natural frequencies and corresponding mode shapesHig. 6). Of course, the frequencies in
Fourier's spectrum will be little different, becaudamping decreasing the natural frequency
in general.

6. Results

6.1. Time-domain response

The response was observed in point witch is in Figbeled as. Example of response in
the time-domain fow = 50 rad s~ andg = 20° is in Fig. 7. It shows the displacement in
transversal directionxfaxis direction). The vibrations are damped in latheely short time.
The damping is caused only by friction in contaatfaces, because the coefficient of
structural and material damping was set zero.
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Q=264 Hz Q=884 Hz Q=1350 Hz

Fig. 6: Natural frequencies and mode shapes

Time-domain response
004 T T T T T

0.03+ : _

0.01

-0.01

transversal displacement [mm]
(o]

0.02 : ~ : : .

ol _

~ i | | | | |
0'040 0.2 0.4 0.6 0.8 1 1.2 1.4
time [s]

Fig. 7: The response in time domain

6.2. Frequency-domain response

Fourier's spectrum was created by applying FFT réitlgm to the response signal in time-
domain (see Fig. 8). Detail of interesting aremi&ig. 9. In the spectrum in Fig. 8 there are
two significant frequencies. First; = 260.8 Hz that is frequency of oscillation in vertical
direction (-axis direction). Second ond), = 802.3 Hz, is frequency of oscillation in
transversal directioncfaxis direction).

536



% 107 Frequency-domain response

802.3Hz ®

magnitude
P

260.8 Hz

0 L Ll L | L L al

10" 10° 10°

frequency[Hz]

Fig. 8 The response in frequency don
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Fig. 9 Detail of interesting ar in Fourier’'s spectrum
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The damping coefficient was determined pursuathéaesonance curve bandwidtfi in the
distanceh,, (see Fig. 9) which is defined as:

h, = 0.707A 3)

where A is the amplitude accordant with appropriate “natufrequency Q;. Damping
coefficient is defined by relation:

_ l(ﬂ) (4)
Po2\q
In this case the damping coefficientis= 0.025, that is2.5%.

Damping coefficients for various valugsandw are in Tab. 5 and response frequencies are
in Tab. 6. These values are plotted in graphsgnlbiand Fig. 11.

Tab. 5: Damping coefficient in dependence on sidd-slope angle and angular velocity

angular velocity o [rad S'l]
1 50 78 157 236
o 20 0,0019 0,0419 0,0528 0,0180 0,0120
_8‘ 5 25 0,0037 0,0371 0,0273 0,0169 0,0170
- o 30 0,0027 0,0320 0,0261 0,0155 0,0124
g %o 40 0,0027 0,0254 0,0198 0,0099 0,0094
% & 53 0,0045 0,0161 0,0100 0,0068 0,0060
? 70 0,0055 0,0047 0,0036 0,0036 0,0030

Tab.6: Parameters influence to response frequencies

angular velocity o [rad S'l]

1 50 78 157 236
o 20 756 746 761 792 794
_8' 5 25 799 771 788 799 796
Z s 30 800 785 797 803 804
s % 40 821 802 815 815 816
3 & 53 838 819 821 822 822
? 70 850 826 826 827 826
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Fig. 10: Damping coefficient in dependence on si@ddl- slope angle and angular velocity

Response frequency

response freguency 3 [Hz]

-!\I
~ B
ob

¥

950

100

side-wall slope angle ¢ ] angular velocity w» [rad.s’1]

Fig. 10: Response frequency in dependence on sadleslope angle and angular velocity
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7. Conclusion

In this paper was performed numerical simulatiorisnmeodel witch contains damping
elements. It was studied the damping coefficierpedelence on the change of selected
geometrical parameters. Simulations time wadJking the FFT algorithm on the response in
the time domain was created the Fourier's spectiitira.damping coefficient was determined
pursuant to the resonance curve bandwidth. It iewshthe geometrical parameters
modification have effect to the damping coefficiearid response frequency values. It is
possible to maximize the damping coefficient ugiagametrical optimization. This problem
will be solved in future.
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