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P. Lošák* , E. Malenovský **  

Summary: This paper deals with numerical simulations of non-linear structure 
vibrating. It was created a simple model of one-side fixed beam with the dovetail 
groove and the damping strap in it. There was contact included between side-
walls of the strap and the groove. Main aim was to determine how the strap shape 
influencing the natural frequency and the damping coefficient. It was observed a 
time-dependency of the displacement. This signal was converted to the frequency-
domain by FFT algorithm. In this Fourier’s spectrum was easy to determine the 
response frequencies. The damping coefficient was determined pursuant to the 
resonance curve bandwidth in certain distance. It was performed several 
simulations with various parameters, and results were plotted to graphs.  

 Introduction 

Bladed disk is a continuum. That means the number of degrees of freedom is infinite, 
therefore the number of natural frequencies is also infinite. The expressive oscillations occurs 
while the excitation frequency is equal to so called speed which is defined by ratio of natural 
frequency to the number of nodal diameters in appropriate mode shape [1]. In bladed disk this 
frequencies even depends on the number of blades, eventually on the number of cyclic 
sectors. Many resonance states occur when turbine is starting up. It can be happened, that the 
operating state will be close to one of these resonance state. Expressive vibrations are 
shortening disk’s lifetime. 

It exists several ways to damp the vibrations. In some cases a wire or several wires 
passing through the holes in the blades can be used. It is not suitable in high pressure stages of 
steam turbines, because the wire is impediment to the steam flow. It is better to locate the 
damping element in rotor end ring. Mostly used damping element shape is the strap which is 
placed in the dovetail groove. Strap shape is defined by these geometrical parameters: middle 
widthb , high hand side-wall slope angle ϕ  (Fig. 1), they are influencing dynamic behavior 
of whole bladed disk. Maximal vibration damping, in the particular operating state, can be 
probably obtained by suitable choice of these parameters. Damping quantity and relative 
motion, between the damping strap and the dovetail groove, hang together. Frictional force 
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value in the contact surface is given by disk diameter, angular velocity of the disk and the 
strap mass. This mass is given by material density, middle width and high of the strap. The 
high is influencing the contact pressure value in additional, because if the high is changed, the 
contact area is changed too. Modification of the side wall slope angle 
strap mass, but change the area of contact surface, thus the normal 
or tangential forces, are influenced too.

 

This paper deals with the case that only one geometrical parameter (angle
changed. High and middle width was kept. Angular velocity of the disk 
the centrifugal force was changed too. The problem was solved in the time
was excited by the shock load.

2. Computational model  

2. 1.  Model of geometry 

The problem was solved in the ANSYS software.
response of whole bladed disk with bandage. On this account, 
model and the dynamic behavior
the dovetail groove and the damping strap in it
the strap and the groove side
walls by pressure which is evoked by centrifugal forces. This effect was supplied by the 
pressure defined on the upper strap face. This pressure depends on
velocity and diameter of the fictive disk.  
are in tab.1. Side wall slope angle 

 

 

 

Fig. 1: Dimension
element

 

value in the contact surface is given by disk diameter, angular velocity of the disk and the 
strap mass. This mass is given by material density, middle width and high of the strap. The 

contact pressure value in additional, because if the high is changed, the 
contact area is changed too. Modification of the side wall slope angle ϕ  
strap mass, but change the area of contact surface, thus the normal force value, and frictional 
or tangential forces, are influenced too. 

 

This paper deals with the case that only one geometrical parameter (angle
changed. High and middle width was kept. Angular velocity of the disk 

fugal force was changed too. The problem was solved in the time
was excited by the shock load. 

The problem was solved in the ANSYS software. It would be difficult to compute 
e bladed disk with bandage. On this account, it was created a 
ynamic behavior was tested on this model. It was one-side fixed beam with 

the damping strap in it (Fig. 2). There was a contact modeled 
the strap and the groove side-walls. In bladed disk, the strap is pressed to the groove side 

by pressure which is evoked by centrifugal forces. This effect was supplied by the 
pressure defined on the upper strap face. This pressure depends on strap mass, angular 
velocity and diameter of the fictive disk.  Particular dimensions, which are staying constant, 

Side wall slope angle ϕ  was variable.  

 

 

Fig. 2: Model of geometry 

 

Fig. 1: Dimensions of damping 
element 

value in the contact surface is given by disk diameter, angular velocity of the disk and the 
strap mass. This mass is given by material density, middle width and high of the strap. The 

contact pressure value in additional, because if the high is changed, the 
 doesn’t change the 

force value, and frictional 

This paper deals with the case that only one geometrical parameter (angleϕ ) was 
changed. High and middle width was kept. Angular velocity of the disk ω  which affecting 

fugal force was changed too. The problem was solved in the time-domain. The beam 

It would be difficult to compute 
it was created a very simplified 

side fixed beam with 
There was a contact modeled between 

disk, the strap is pressed to the groove side 
by pressure which is evoked by centrifugal forces. This effect was supplied by the 

strap mass, angular 
, which are staying constant, 
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Tab. 1: Model dimensions 

length of model l 310 mm
width of model bm 110mm

high of model hm 30 mm

middle width of damping strapb 35 mm
high of damping strap h 12 mm  

2. 2.  Model of material 

The bladed disk has been made of steel.  Thus it was supposed that material of this model 
was steel too. It was presumed that area of linear-elastic behavior will be not exceeded, thus 
selected material was linear isotropic. Young’s modulus � was selected � � 2.1�5�	
 and 
Poisson’s ratio � � 0.3. They are the most common steel constants. In problems where the 
mass matrix is in equations, the material density has to be defined, thus ρ=7.85e-9t.mm-3. 

2. 3. Generating the mesh 

Because the following simulations can be time-consuming, it was needed to create model 
with coarse mesh in order for decrease the number of degrees of freedom. Of course, the 
coarse mesh does not to produce accurate results, but in this paper was observed the global 
dynamic behavior. Particular quantity (for example quantity of displacement) was not 
examined. Mesh was generated by structural linear elements SOLID45. 

2. 4 Model of contact 

Between the side-walls of the damping strap and the groove was created the contact. The 
side-walls of the damping strap were meshed by TARGE170 and the side-walls of groove 
were meshed by CONTA173. The coefficient of friction depends on the relative velocity of 
the surfaces in contact. In the ANSYS software there is implemented the model of contact, 
which express this dependency as follows: 

   
  (1) 

 

Where �� is the static coefficient of friction, �� is the kinetic coefficient of friction, � is 
decay coefficient and ���� is relative velocity of the surfaces in contact. 

This model presents a part of the disk bandage, with is in the high pressure stage of the 
steam turbine. There is a superheated stem in it. Thus between contact surfaces was supposed 
a solid friction. Parameters describing contact are in Tab. 2. A plot of friction coefficient 
dependency on relative velocity is in Fig.3.  

Tab. 2: Contact parameters 

static coefficient of friction µs 0.7

kinetic coefficient of friction µk 0.6

decay coefficient D 0.8  

� � �� �1 � ����� � 1� ������. ������ 
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 Fig. 3: Friction coefficient dependency on relative velocity 

3. Boundary and initial conditions 

The beam was fixed on the one side. It is shown in Fig. 4. Initial conditions present the 
state of the beam at time � � 0 . It was presumed, the beam is in quiescence state. 

In the bladed disk, the damping strap is pressed to the side-walls of dovetail grove by 
centrifugal force !", which depends on the disk angular velocity # and the disk diameter $ 
and the damping strap mass. In this simplified computational model this effect was obtained 
by applying pressure on the upper surface of the damping strap. The pressure was computed 
using equation (2). 

   

  (2) 

 

Where the �% is pressure, witch supply the centrifugal force, # is the angular velocity of the 
disk, $ is disk diameter, & is material density, ' is the damping strap high, ( is middle width 
and ) is the side-wall slope angle (see Fig. 1). The simulation was repeated with various 
angular velocities #. 

 4. Excitation and simulation 

This problem has been nonlinear by reason of include the contact into the model. On this 
account it is impossible to talk about natural frequencies, because frequency in the nonlinear 
structures is depended on the deflection.  It’s only frequency whereat the structure oscillates 
by explicit amplitude. Modal analysis is applicable only on conservative or weakly non-

�" � *#+ $2 &'(,
*( � 'tan ), 
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conservative systems. To be possible to assess the effect of the angle 
“natural” frequency, it was presumed small deflection about balanced state. The problem was 
linearized. It was observed the time dependence of the deflection on the end of the beam. 
Using the Fourier transform was
was excited by shock load. It’s time duration was 
The loads were applied on model as two forces acting as is shown in Fig. 5. 

               

 

 

 

Time of simulation was 1s. The o
was kept zero, Thus it was possible to observe the damping effect evoked only by friction 
between contact surfaces. The response

 

conservative systems. To be possible to assess the effect of the angle 
“natural” frequency, it was presumed small deflection about balanced state. The problem was 
linearized. It was observed the time dependence of the deflection on the end of the beam. 

was obtained Fourier’s spectrum witch was analyzed. 
was excited by shock load. It’s time duration was 9e-4s  and magnitude of force 
The loads were applied on model as two forces acting as is shown in Fig. 5. 

Fig. 4: Boundary condition 

Fig. 5: Applying loads 

The outside structural and the inner material damping
possible to observe the damping effect evoked only by friction 

between contact surfaces. The response was observed in point witch is in Fig.5 la

conservative systems. To be possible to assess the effect of the angle φ change to the 
“natural” frequency, it was presumed small deflection about balanced state. The problem was 
linearized. It was observed the time dependence of the deflection on the end of the beam. 

analyzed. The model 
and magnitude of force was 1000N. 

The loads were applied on model as two forces acting as is shown in Fig. 5.  

 

 

inner material damping coefficients 
possible to observe the damping effect evoked only by friction 

in Fig.5 labeled as S. It 
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was observed the displacement in the transverse direction (�-direction). The solution was 
repeated with various values of the side-wall slope angle ) and angular velocity #. The 
values of these parameters are in Tab. 3 and Tab. 4. 

Tab. 3 The side-walls slope angle dimensions 

φ [°]
1 20
2 25
3 30
4 40
5 53
6 70  

 

Tab. 4 The angular velocities values  

ω [rad s-1]
1 1
2 50
3 78
4 157
5 236    

5. Modal analysis of conservative model 

To identify the individual response frequencies in the Fourier’s spectrum, the modal 
analysis was computed. Modal analysis was performed on a linear model. It was computed 
natural frequencies and corresponding mode shapes (see Fig. 6). Of course, the frequencies in 
Fourier’s spectrum will be little different, because damping decreasing the natural frequency 
in general.  

6. Results 

6.1. Time-domain response 

The response was observed in point witch is in Fig. 5 labeled as 0. Example of response in 
the time-domain for # � 50 2
$  34 and ) � 20° is in Fig. 7. It shows the displacement in 
transversal direction (�-axis direction). The vibrations are damped in a relatively short time. 
The damping is caused only by friction in contact surfaces, because the coefficient of 
structural and material damping was set zero.  
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 Fig. 6: Natural frequencies and mode shapes 

 

 Fig. 7: The response in time domain 

6.2. Frequency-domain response 

Fourier’s spectrum was created by applying FFT algorithm to the response signal in time-
domain (see Fig. 8). Detail of interesting area is in Fig. 9. In the spectrum in Fig. 8 there are 
two significant frequencies. First Ω4 � 260.8 9: that is frequency of oscillation in vertical 
direction (;-axis direction). Second one, Ω+ � 802.3 9:, is frequency of oscillation in 
transversal direction (�-axis direction).   
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 Fig. 8 The response in frequency domain

 Fig. 9 Detail of interesting area

 

 

Fig. 8 The response in frequency domain 

Fig. 9 Detail of interesting area in Fourier’s spectrum 
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The damping coefficient was determined pursuant to the resonance curve bandwidth Δ= in the 
distance '> (see Fig. 9) which is defined as: 

  (3) 
 

where ? is the amplitude accordant with appropriate “natural” frequency Ω@. Damping 
coefficient is defined by relation: 

   (4) 

 (4) 

In this case the damping coefficient is (A � 0.025, that is 2.5%. 

Damping coefficients for various values ) and # are in Tab. 5 and response frequencies are 
in Tab. 6. These values are plotted in graphs in Fig.10 and Fig. 11. 

Tab. 5: Damping coefficient in dependence on side-wall slope angle and angular velocity  

1 50 78 157 236

20 0,0019 0,0419 0,0528 0,0180 0,0120

25 0,0037 0,0371 0,0273 0,0169 0,0170

30 0,0027 0,0320 0,0261 0,0155 0,0124

40 0,0027 0,0254 0,0198 0,0099 0,0094

53 0,0045 0,0161 0,0100 0,0068 0,0060

70 0,0055 0,0047 0,0036 0,0036 0,0030

angular velocity ω [rad s-1]
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Tab.6: Parameters influence to response frequencies  

1 50 78 157 236

20 756 746 761 792 794

25 799 771 788 799 796

30 800 785 797 803 804

40 821 802 815 815 816

53 838 819 821 822 822

70 850 826 826 827 826
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Fig. 10: Damping coefficient in dependence on side-wall slope angle and angular velocity

 

Fig. 10: Response frequency in dependence on side-wall slope angle and angular velocity 

539



 

7. Conclusion 

In this paper was performed numerical simulations of model witch contains damping 
elements. It was studied the damping coefficient dependence on the change of selected 
geometrical parameters. Simulations time was 1s. Using the FFT algorithm on the response in 
the time domain was created the Fourier’s spectrum. The damping coefficient was determined 
pursuant to the resonance curve bandwidth. It is show, the geometrical parameters 
modification have effect to the damping coefficient and response frequency values. It is 
possible to maximize the damping coefficient using parametrical optimization. This problem 
will be solved in future. 
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