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Summary: New modifications of SIFEL program improved simulation of the real 
process of the casting procedure. It was implemented and successfully used 
numerical solution of B3 model using a continuous retardation spectrum method. 
A new solver of time dependent problems was implemented and used. The solver 
contains Newton-Raphson iteration method which significantly improved results. 
A scalar damage model was definitely modified to respect time variability of 
Young modulus and tensile strength. Advanced models of anisotropic damage 
were theoretically derived and implemented. Mentioned methods and models were 
used for the 2D model slab which was cast in several layers. The behavior was 
solved as coupled problem. 

1. Introduction 

The foundation of structures on foundation slabs is very common case. Foundation slabs can 
have a significant thickness in case of large structures and thus the problem with their 
concreting arises due to the hydration heat generation. It is necessary to use a sufficiently 
apposite numerical model for the verification of the casting process. That was the reason for 
developing the suitable tools and models for checking of casting procedure in the SIFEL 
program. 

Casting procedure of the foundation slab can be solved as a coupled thermo-hydro-
mechanical problem in this software. The Künzel and Kiessl`s models are at disposal for the 
simulation of the heat and moisture transport processes. The Bazant’s B3 model can be used 
for the description of concrete creep and shrinkage, damage can be modelled by the scalar 
isotropic damage model or some more advanced anisotropic damage model. The subsoil 
under the foundation slabs had to be modelled by the system of spring supports due to the 
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complexity of the computation process. The stiffness of the springs can evolve nonlinearly 
depending on settlement of the foundation slab. Another possibility of the subsoil model 
represents using of the full 2D or 3D subsoil model, but this approach would increase the 
computation time too. 

2. Modelling of mechanical behaviour in case of sequential casting procedure 

Several important modifications of SIFEL program were performed on basis of experiences 
from the previous analyses of coupled problems. These modifications improved simulation of 
the real process of the casting procedure. First of all, the code was extended by the 
implementation of the sequential construction using time controlled switching on/off of 
particular degrees of freedom. A new solver of time dependent problems was implemented 
and used. The solver contains Newton-Raphson iteration method which significantly 
improved results. A scalar damage model was definitely modified to respect time variability 
of Young modulus and tensile strength. Advanced models of anisotropic damage were 
theoretically derived and implemented. Mentioned methods were used for a model of cranked 
foundation slab which was cast in three layers. The behavior was solved as a coupled problem 
in which the mechanical behavior was assumed together with heat and moisture conduction 
and their interactions. 

It was shown that the results hardly depend on precise model of the real process of casting 
procedure. Used creep model B3 is too complicated and it was not possible to use zero or 
almost zero Young modulus for non-cast parts. This is why the SIFEL code was extended by 
the time controlled switching on/off of particular structure pieces. This was realized by the 
time controlled change of nodal code numbers. Above approach can simulate the sequential 
construction in the best possible way because the non-cast parts of structure are not assumed 
during the computational process. 

Concrete exhibits very complicated mechanical behavior and many material models were 
developed to describe it. But most of them can capture only one or several attributes of this 
behavior and this leads to combination of these models. 

The decomposition of the total strain in the material point to the particular components is 
the base of the computations with several different material models describing different 
attributes of the mechanical behavior. In described cases, the following decomposition of the 
total strain is used 

 εtot = εe + εd + εcr + εshr + εft, (1) 

where: 

εtot is a total strain 

εe is an elastic component of strain 

εd is a strain component due to damage of concrete 

εcr is a creep component of strain 

εshr is a shrinkage component of strain 

εft is a free temperature strain 
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Creep and shrinkage effects of concrete together with free temperature strains have 
significant effect to the total strain which is decisive for evolution of cracks. The B3 model 
can be used for creep and shrinkage modeling, details about this model can be found in 
(Bazant et. al, 1984). Both effects are included in it and they are temperature dependent. The 
original numerical solution of B3 model was based on Dirichlet series and it was found too 
slow for purposes of the given coupled problem and that is why the continuous retardation 
spectrum method was implemented. Detailed description of the above method can be found in 
Bazant & Xi (1995). 

2.1 Scalar isotropic damage model 

Significant number of material models were developed describing damage of concrete. 
Taking into account that the computing coupled problems is extremely time consuming, the 
simple scalar isotropic model have been used. In this model, the damage description is very 
simplified, but it can be used as an indicator, whether a structure will be damaged and where 
it will be damaged eventually. The model is dependent on sizes of mesh elements and it 
dissipates different energy for the various mesh elements density. This was the reason for the 
rewriting of the model and the variable softening modulus technique was employed, which 
partially suppress this fault. The method consists in that the strain due to damage is assumed 
in the following form 

 
h

w
el =− = εεεd , (2) 

where w is the crack opening and h is a characteristic size of element and ε is defined as 
follows 
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During damage evolution, the stress can be formulated depending on the crack opening w 
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where ft denotes tensile strength of concrete and wf is the initial crack opening which is treated 
as a material parameter. The stress can be written for scalar isotropic damage in the following 
form 

 εωσ elD)1( −= . (5) 

Equations (3), (4) and (5) can be combined and assuming εel as 

 
Eel
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the resulting nonlinear equation can be written for the damage parameter ω. 
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Equation (7) was derived for the uniaxial stress state assumption and it is necessary to 
replace strain ε by the equivalent strain εeq for other cases. Equation (7) is nonlinear and it can 
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be solved by Newton method. Detailed description of the variable strain softening technique 
can be found in Jirásek (1998). 

2.2 Anisotropic damage model 

The scalar isotropic damage model can be used for case of uniaxial tension quite 
successfully. The computation of this model is very fast and this was the reason for its using 
in the given coupled problem. The model has only one damage parameter ω and that is why 
damage evolution in one direction reduces stiffness in rest directions. It introduces certain 
inaccuracy especially for changing to a 3D model. Employing much more effective method 
for B3 model (continuous retardation spectrum) creates space for application of a more robust 
damage model. 

An anisotropic damage model represents one possible way of damage modelling. The base 
of this model was described in Papa & Taliercio (1996). Following damage parameter and 
two independent damage tensors were established: 

  d- volumetric damage parameter introduced only for tension 
tD - damage tensor for damage induced by tensile strains 
cD - damage tensor for damage induced by compressive strains 

The model assumes splitting of the elastic strain tensor into its tensile and compressive 
parts  

 ct eee +=  (8) 

where te  (respectively ce ) is a strain tensor having the same positive (respectively negative) 
eigenvalues as e and vanishing remaining eigenvalues. They can be expressed as: 
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where the index α  denotes principal direction, ⋅  are Macauley brackets and αin  are 

components of eigenvectors ofe. The model is derived form the elastic potential which was 
slightly modified in the volumetric part compared to the original proposed in Papa & 
Taliercio (1996). The following expression is obtained assuming above equations for 
Helmholtz free energy 
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where K is bulk modulus, G is shear modulus, volε  is the volumetric strain and 1 is the second 

order identity tensor. Damage driving forces conjugated to d, tD  and cD  can be derived from 
Equation (10) by its derivation with respect to damage parameters: 
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The tensors tY and cY  have the same principal directions as e and by consequence, both 
tD  and cD  also have the same directions. These forces have the form of potential energy of 

the appropriate part of the strain tensor i.e. deviatoric and volumetric respectively. Evolution 
of principle damage components of tensors tD  and cD  is controlled by load functions which 
are defined by Equation (12). 

 ( ) ( )[ ] 01/11 0 ≤−−+−= βββ
αβ

β
α

β
α

B
YEYADf  (12) 

where the index α  denotes principal direction, the index β  can be either t or c, and A, B are 

material parameters ( 1,0 ≥≥ BA ), E is the Young modulus and 0Y  is a threshold value of the 

given non-dimensional damage driving force.  

 ( ) ( )[ ] 01/11 0 ≤−−+−= byEyadf  (13) 

Similarly, evolution of volumetric damage is controlled by the load function described by 
Equation (13), where a, b are material parameters and 0y  is a threshold value of the non-

dimensional volumetric damage driving force. Introduced load functions define elastic 
domains for their negative values and no evolution of damage occurs in these domains. When 
the given damage force is on boundaries of domain (0=f ), damage components evolves. 
Note that the damage components can be increased only and their values have to be in range 
<0, 1>, where 0 means no damage and 1 means full damage. 

Components of principal stresses ασ can be obtained from Equation (10) by derivation 

with respect to e and the transformation to principal directions: 

 ( ) ( )( )[ ] ( )( ) ( )[ ] αααααα εεεεεσ ct
volvol DHDHGHdGK −−−+−−= 12123  (14) 

where ( )⋅H  is Heaviside function.  

Correct energy dissipation depending on the element size can be derived similarly as for 
the scalar isotropic damage model. Dissipation is defined by  

 ∫
∞ •

=
0

dtDYD  (15) 

and the dissipation can be related with fracture energy fG  

 DG f h=  (16) 

where h is a characteristic element length. Rewriting Equation (15) for one principal damage 
component and substituting time derivations from Equation (14) leads to the integral 
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After integration, the final relation is obtained depending on fracture energy, element size 
and material parameters A, B for particular principal directions and tension or compression 
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3. Results form performed analyses 

Thermo-hydro-mechanical coupled problems are extremely time consuming and that was the 
reason for using only 2D problem although the program can solve also the 3D problems and 
all material models are derived for 3D too. Computations are slowed down not only by the 
complex material models but also by necessity of a relatively fine mesh and short time steps. 
The solution of the given problem takes about one day on a computer with Pentium 4 on 3.2 
GHz frequency. Approximately, two days of structure real existence are computed during this 
time. The numerical analysis was concerned with modelling of the foundation slab of a 
commercial building in Prague-Těšnov. The slab is 1 m thick and it is cast with step 1.3 m. 
Particular slab spans are 14.8 and 15 m, shrinkage bands are left on the boundaries and their 
width is 1.35 m. The slab is reinforced with 12ØV25/m both in longitudinal and transversal 
directions. Dimensions and shape of the finite element mesh is depicted in Fig. 1. 

 

 

Fig. 1: Dimensions of the model and finite element mesh – overall view. 

 

The mesh had to be fine on boundaries, which was caused by increasing of temperature 
and humidity gradients in these places and by the damage occurrence too. The slab was cast 
in three layers and it was watered by three days and covered by PE sheet after the casting 
finish. The plane-strain model of the slab was assumed. The computer simulation begins at 1 
hour after the casting finish of the first layer. In the performed thermo-hydro-mechanical 
analysis, Künzel-Kiessl model was used for modelling of transport processes, B3 model and 
scalar isotropic damage model were used for the description of the mechanical behaviour. The 
slab was supported by spring supports on the bottom and stiffness of springs on the edges was 
increased in order to capture of subsoil behaviour. The slab was loaded by dead weight and 
thermal boundary conditions were applied. These thermal conditions simulated average 
temperature in June and they were obtained by the long-term measurements in the given 
locality. Casting of particular slab spans was performed in three layers which were 
sequentially turned on in the model by 1 hour from the casting finish. 

Figures 2-5 capture damage distribution and they were obtained for time 15 hours from 
the casting. Fig. 2. captures overall view on the bottom level of the foundation slab and a 
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major damaged zone can be seen at the bottom. Its detail is also in Fig.4. Minor damaged 
zones are depicted in Fig. 3., which represents detail of damaged zone at the top, and Fig. 5, 
which represents damaged zone at the right corner. Time history of damage parameters 
evolution is depicted in Fig. 6. 

 

 

 

Fig. 2: Distribution of the damage parameter ω for three layers of concrete after 15 hours 
from the casting. 

 

 

 

 

Fig. 3: Distribution of damage parameter ω for three layers of concrete in the top left 
corner of the slab after 15 hours from the casting. 
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Fig. 4: Distribution of the damage parameter ω for three layers of concrete in the middle 
of the slab after 15 hours from the casting. 

 

 

 

 

 

 

 

 

Fig. 5: Distribution of the damage parameter ω for three layers of concrete in the top right 
corner after 15 hours from the casting. 
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Fig. 6: History of evolution of the damage parameter ω for three characteristic domains of 
the slab. 

4. Conclusions 

Results of the analysis confirmed that the precise modelling of the sequential construction is 
very important for damage parameter evolution. Resulting distribution of the damage 
parameter can be viewed in Fig. 2. The distribution corresponds approximately to time 15 
hours from the casting finish of the first bottom layer of the low slab. In Fig. 4, it can be seen 
on the detailed view that the bottom layer is damaged to 20 cm depth. Maximal damage 
parameter value is about 0.4. This damage is caused by the hydration process in the top layer 
which is delayed compared to bottom layers. During the peak of hydration heat generation in 
the top layer, the slab is deformed by the reason of non-uniform heating and it has tendency to 
deflect up. The bottom layer is than damaged in the middle as a result of dead weight load. 

Climate conditions are another important factor causing damage. It can be recognized in 
Fig. 3 that all top surface of the slab is damaged but only to the low depth. This damage is 
caused by drying shrinkage which is amplified by applied climate conditions. The top right 
corner and the slab front were last significantly damaged areas. Damage was caused by shear 
stresses and it can be seen in Fig. 5. 
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