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Summary: The aim of this contribution is the analysis of damping properties both 
the material of gear mechanics in the mesh and the lubricating oil film in the 
tooth space at the tooth profile contact bounces into the area of the technological 
gear backlash. The damping influence over gear mesh stability is pursued on the 
special case of the simulation model of the system with split power flow for the 
selected frequency range of the resonance characteristics. The nonlinear damping 
in gear mesh and in gear system is concerned significantly in the amplitude 
progress, greatness and phase shift of relative motion towards stiffness function 
alternatively towards its modify form in gear mesh. 

1. Introduction 

The nonlinear dynamics of the time-heteronomous parametric systems has formed especially 
in internal dynamics of these in past few decades the extra high-actual branch, above all by 
the high-speed differential of pseudoplanetary transmission systems with kinematic couplings. 
The damping in the gear mesh both in the normal or inverse mesh and in the phase of the 
tooth profiles contact bounce by the impact effects forms here the important problems.  

The damping in gear mesh and in gear system is concerned significantly in the amplitude 
progress, greatness and phase shift of relative motion towards stiffness function alternatively 
towards its modify form in gear mesh. In consequence of these and another actions rise above 
resonance characteristics certain singular locations with jump amplitude course. 

Deeper and more accurate dynamic research particularly in the aeronautical transmissive 
systems in light high-speed turbopropelled units forms a basis of their operational reliability 
and safety. 

The forces and dynamic effects which occur in the gear mesh of kinematic pairs are not 
only a basis for their quantitative i.e. strength dimensioning, but forms a basis for qualitative 
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tribology analysis in complicated gear meshes (rolling – sliding) of kinematic pairs of cog 
wheels. 

One of the topical problems of the tribology in the dynamics of high-speed light gear 
systems is among others by theory documented determination of “real” carrying width of 
gearing in comparison with “constructional” one. This is given by the theoretical width of 
carrying oily film in gear mesh within the constant pressure what is enlarged of areas where 
the pressure diminishes into static one in the tooth face.  

One of the main factors which influence this problem are dynamic forces in gear mesh of 
kinematic pairs e.g. in the planetary gear systems by the normal gear mesh. 

 

 
Fig.1 – The substitutive mathematical – physical model of kinematic pair of gears (in the red 

area) of common differential planetary gear system with double planet wheels. 

2. Mathematical-physical model and solution methodology of dynamic problem 

The contribution reassumes onto hitherto published works [4],[5],[6] and [7] and also here 
goes out from the solution of special case of improved discrete mathematical-physical model 
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of kinematic pair of cog wheels from one branch of pseudoplanetary systems, s. Fig.1, which 
represents system with six degrees of freedom. 

The motion in such special case (of common model, Fig.1) of pair wheels with spur 
gearing leads by mass discretisation as well as the existence influence of different weak – 
analytical and strong – non-analytical nonlinearities such as e.g. influence of technological 
gear backlash and next by the parametric exciting sources on the solution of six nonlinear 
deterministic ordinary differential equations with time variable coefficients [1] 
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Here v  means generally the m-dimensional vector (m = 6) of displacement of system 

vibration, )(K vw  K-th power of vector v , which is defined by expression 

))()(()( KK vwvwDvw 1−= . ))(( vwD  denote the diagonal matrix, whose elements at the 
main diagonal are comprised by elements of vector vvw ≡)( . Furthermore M  is the matrix 

of mass and inertia forces, K1  and K
1K  are the matrix of linear and nonlinear damping 

forces, C1  and  CK  are the matrix of linear and nonlinear reversible forces and )(τF  is the 

vector of non-potential external excitation with components nn ba ,  and with the phase angle 

ϕ .  H  is the Heaviside´s function, which allows to describe the motions – contact bounces – 
due to strongly non-analytical nonlinearities, for example due to technological tooth backlash 

)(τs . Corresponding linear and nonlinear coefficients of damping are denoted by iδβ , iDD,  

linear parametric stiffness function by the symbols nnn VUY ,,  and nonlinear parametric 

functions, so-called parametric nonlinearities, by the symbol 
n

I . ε  and κ  are the coefficients 

of mesh duration and amplitude modulation of stiffness function  C1 . Derivative by non-

dimensional time τ  are denoted by dashes,  tcωτ = , cω  … mesh frequency, t … time. 

The measure of the dynamic load in the gear mesh is represented by the dynamic force 

                                                    )(y)(CFdyn ττ=1 ,                                                             (2) 

where )(y τ  is  the relative motion in gear mesh in the course of the mesh line. 

The relative motion as the measure of dynamic loading in the gear mesh, i.e. in the course 
of mesh line, can be described for the generally elastic supported system with bearing motions 
{ }2,32,3 ; zy  of the gear pairs 3,2 by respecting so-called run-out of pitch circles, which are 

modelled by eccentricities 2,3e , in the form [1],[3] 

     )(f)sin(esineyyRR)(y ,
bb τϕϕϕϕτ 21

2233232233 ++++−−−−−−−−++++−−−−++++++++==== ∆ ,                     (3) 

where )(f, τ21  is the deflect function, or the deviation of the cog side form from the ideal 

involute, ∆  is the phase angle of angular displacement between eccentricities 2,3e
 and 

23,bR are radii of basic circles. 
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The analytical form of the resulting stiffness function of spur gearing in mesh )(C τ ,see 

eq.(1) and eq.(2), can be expressed for 21;∈∈∈∈ε  by Fourier´s series in real time  t in form [1], 

[3] 
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where the mean stiffness Cs is defined by 
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The symbol 1
maxmin

−= CCκ  represent the amplitude modulation of resulting stiffness 

function in gear mesh, maxmin ,CC are minimal and maximal values of stiffness in gear mesh 

and ε  is coefficient of mesh duration, which indicates how many teeth pairs is at any one 
time in mesh at mesh line. In extreme cases, for example 1=ε , is during the mesh time at 
mesh line only one teeth pair, in the case 2=ε  are two pairs of teeth whole time in mesh. 

In these cases verges the parametric system i.e. in the stiffness with time heteronomous 
system on the system with constant coefficients. The intermediate values ε  determine the 
proportion of the change of the number of teeth pairs in the gear mesh at the mesh line. In the 
Fourier´s series (4) ε  determines the time proportion the change of the minimal and maximal 
resulting stiffness maxmin C,C  during the gear mesh. This fact markedly affects the dynamics of 

system and is connected with the size of amplitude of relative motion in gear mesh. That is 
influenced by time duration of mesh on that which potential stiffness level of appropriate 
reversible force by the given frequency tuning. In the stiffness of teeth is respected in the next 
application only the stiffness of the separate cogs and their fixation into a solid half-space, 
discs are considered absolutely solid. 

On the basis of the carried analytical analysis of the weakly and strongly nonlinear 
parametric integrodifferential problem with the solving cores in the form of splitting Green´s 
resolvents [2], in that the solved differential boundary-value problem was transformed, 
concurs now the numerical solution of the given problem. For the numerical analysis of the 
dynamic phenomena with impact effects of the cited system of the kinematic pairs of spur 
gears was carried out the methodology of solution by means of the simulation model of this 
system in the MATLAB/Simulink. [3] 

The next factor which influences qualitatively and quantitatively the course of y(t) is the 
friction in gear mesh or frictional forces in the motion rolling – sliding of kinematic pair – 
gearing. They induce the variance of originally considered constant preload 

.konst)M(MM ====−−−−−−−−==== 23  on Tv MMM ∆±±±±==== , where TM∆  is the additional moment from 

friction forces.  
The friction forces in the gear mesh constitute the separate chapter in the frame of 

tribological process of lubrication. The lubricant between frictional faces of cog profiles in 
gear mesh suppresses the friction and thereby the wear of frictional faces and add to the 
energy efficiency of transmission. The theory of the EHD lubrication in gear mesh of the 
finite width at the line contact under the rolling and sliding contact is on the present-day one 
of more developed areas, because the constructional width of gearing is not the same as the 
carrying width of the lubricant film. The high pressure in the gear mesh is suppressed in the 
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gearing margin in the static pressure. The gear profiles of kinematic pairs pursue complicated 
motion rolling - sliding namely sliding resulting as from the gear mesh geometry so from the 
relative motions of elastic bearings, i.e. motions caused as by the elasticity of bearings so by 
the wheel run-out. Purely rolling motion in gear mesh occurs only in the pitch point on the 
mesh line by absolutely solid bearing of wheels. In this contribution is applied for qualitative 
complying with friction force )t(FT  as the zero approximation only very estimative theory of 
Coulomb´s friction  
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where fT  is the coefficient of dry friction, )t(γ  is the function with values 0.5;1;0;-1;-0.5 with 
regard to momentaneous position of gear mesh at mesh line of gearing, that corresponding  
with the resulting stiffness function and with the sense of action of friction force (s. [3]) and  

0
32 ee +δ  is the Kronecker´s symbol. 

The analysis of dynamic features of solved special case of general non-linear parametric, 
i.e. time heteronomous, system with kinematic couplings – spur gears is in this contribution 
aimed to the investigation of reasons of forms of resonance characteristics of given 
mathematical-physical model both by 

a) the conservative system in gear mesh* and 

b) non-conservative system. 

By reason that in such complicated parts of transmissive systems, e.g. in the gear mesh 
“rolling – sliding”, are still unknown neither approximate data about damping properties or 
about damping patterns both in gear mesh and also in the connection with fixation into gear 
rim and discs including hubs like unit, will be this damping simulated by means of different 
functional relation both in the area of gear material at normal or inverse mesh incl. 
corresponding parts of gear rim and discs, and the influence of viscous damping in the area of 
technological gear backlash, i.e. the influence of oils in the phase of teeth profile contact loss. 
The lightening holes in discs of wheels also markedly influence the damping, similarly the 
viscous damping of lubricant mediums is dependent on their temperature etc.  

In this study will be the influence of damping or the damping forces in system of motion 
equations (1) of given model of mechanic system represented – modelled by the terms in form 
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* Under the definition „conservative system“ will we here suppose the system what is depicted in Fig.1 and 
described by the system of motion equations (1) without terms contained in eq. (7) what describes the linear and 
nonlinear damping forces. The friction force in gear mesh presents certain internal exciting component of 
system. In the contribution it is described by eq. (6) and creates also certain dissipation of energy in frame of 
definition of conservative system. Despite of we keep it in the contribution because induces changes – 
alternations of sense of friction which are given not only by means of gear mesh geometry at the passing of mesh 
by the pitch point on the mesh line, but also by every change of relative motions of wheels with elastic bearings, 
accordingly as certain exciting motion source in system. 
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The particular combinations of linear and nonlinear damping in gear mesh and in teeth 
backlash s(t) by the impact effects are given in Tab.1.  
 

Tab. 1. Combinations of damping in gear mesh. 

Combinations of damping in gear mesh 

 

conser- 

vative 
system 
in gear 
mesh 

linear 
damping 
in gear 
mesh - L 

quadratic  

damping 
in gear 
mesh - Kv 

cubic 
damping 
in gear 
mesh - Ku 

L + Kv L + Ku 
L + Kv + 

Ku 

 

Kv + Ku 

k1 0 ××××   ××××        ××××   ××××  ××××   ××××  ××××   ××××     

k2 0    ××××   ××××     ××××   ××××     ××××   ××××  ××××   ××××  

k3 0       ××××   ××××     ××××   ××××  ××××   ××××  ××××   ××××  

k1m 0  ××××  ××××         ××××  ××××   ××××  ××××   ××××  ××××     

k 2m 0     ××××  ××××      ××××  ××××      ××××  ××××   ××××  ××××  

k3m 0        ××××  ××××      ××××  ××××   ××××  ××××   ××××  ××××  

Symbol 
of 
marked 
solution 
in 
figures 

� � � � � � � � � � � � � � � � � � � � � � 

Variation a b c d e f g h 

Note:  k1,2,3   … material damping in gear mesh; k1m,2m,3m …  viscous damping of lubricant 
mediums in the tooth backlash (without  contemplation of temperature influence; 1 – linear, 2 
– quadratic, 3 – cubic. 

3. The exemplification of analysis of nonlinear damping influence on properties of 
resonance characteristics and bifurcation in gear mesh 

By reason that in gear mesh of kinematic pairs are still unknown in general both theoretical 
and experimental patterns about vibration damping, were placed in the equation systems (1) 
the expression (7) for vibration damping in gear mesh and for the qualitative and quantitative 
analysis then combination of damping according to the Tab.1. By the substitutive 
mathematical – physical model of system, s.Fig.1 and by means of its motion equations we 
are able to describe all motions, which can during the mesh occur, i.e. the normal mesh, the 
impact effects in gear mesh with contact bounces of cog profiles and the inverse mesh, when 
the inverse cog faces come in mesh. The damping in the all combination of meshes is 
described by the coefficients k,km, s. Tab.1. Besides so-called conservative system in mesh 
with 0=mk,k , here are given the damping combination in gear meshes both linear, quadratic, 

cubic and their variation. 

This study continue for example the works [4], [5], [6], where are solved some dynamic 
problems connected mainly with the linear damping in gear mesh. In relation to the limiting 
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extent of the contribution we present in next only some dynamic properties of the damping of 
relative motion y(t) in gear mesh of kinematic pairs of given parametric system. 

All the resonance bifurcation characteristics {{{{ }}}})t(y;ν  have been solved for 

;,;, 587905691 == κε  [kg]101233];[Nmm104 3-15 −== .,m.C redmax . The values of material 

damping 32,kk ≡  both in the area of normal mesh and inverse one, as well as the values of 

viscous damping in the tooth backlash m,mm kk 32≡  (for reason of simplicity we do not take 

into consideration the temperature influence) are considered in all next given examples of 
solution identical, i.e. 95311 ,kk m == , which corresponds to proportional damping 

062.0== mββ . 

 
Fig.2 – Resonance characteristics of relative motion )t(y  of time heteronomous system 
excited by the parametric stiffness function )t(C  for the combination of damping in the 
gear mesh according to Tab.1: 

- (a+b) …  conservative () and linearly damped gear mesh (�,�,�) 

- (a+c) …  conservative () and quadratic damped gear mesh (�,�,�)  

- (a+d) …  conservative () and cubic damped gear mesh (�,�,�)  

- (h) … quadratic and cubic damped gear mesh (�,�,�) 

and for the fifth quasisteady revolution of gear wheels from the mathematical – physical 
model in accordance to Tab.1.  
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In the Fig.2 are colour coded the area of normal gear mesh for 0≥)t(y , the area of the 

phase of teeth profile contact loss ( K)t(s),t(s)t(y < the tooth backlash) and the area of 

inverse mesh ( )t(s)t(y > ) with the ordering of colours white, yellow and red. 

The first picture with the damping variant (a+b) and similarly the courses (a) - () in the 
Fig.2 forms just comparative courses of resonance characteristics both of linear damping in 
gear mesh and conservative system with the nonlinear courses, i.e. with nonlinear damping in 
the gear mesh, they will be discussed furthermore. 

The courses with nonlinear variants of damping in the gear meshes differ from linear ones, 
in detail discussed in [4], [7], … , not only qualitatively by the singular incontinuity locality – 
jumps, but also quantitatively in the courses of resonance characteristics. The give courses 
with nonlinear damping in the gear mesh differ above all in the variants (�,�)  and (�) . 
Whereas the variants (�,�) marks out with continuous courses in whole given resonance 
range 2160 .;.s ∈ν  and quantitatively in the normal mesh, i.e. for 0≥)t(y , differ just 

slightly (the influence of the second and the third power of )t(y′  in (7)), the variants with the 

marker (�) differ by the existence of singular i.e. jump location in the vicinity 660.s ≈ν  

and 80.s ≈ν  but with different quantitative dissimilarity likewise in linear cases. 

Simultaneously these courses de facto do not differ here in the area 80660 .;.s ≈ν  , in the 

area 2180 .;.s ∈ν  differ from the singular location 80.s ≈ν next both qualitatively and 

quantitatively. The courses  (�) round off from the jump location 80.s ≈ν  for the cubic 

damping (d) and for the composite damping (h) in gear mesh and the peak )t(ymax  shifts 

from 80.s ≈ν continuously to higher values of sν . 

In Fig.3 are colour-coded marked the areas of gear mesh, i.e. with white colour the area of 
normal mesh ( 0≥)t(y ) and with yellow colour the area of jump effects (  ),t(s)t(y < where 

K)t(s  teeth backlash).  

In the first column of this picture are plotted the bifurcation resonance characteristics of 
quadratic variant damping (c), in the first row for the combination (�), in the second one then 
for the combination (�).By analogy forms the second column the bifurcation resonance 
characteristics of cubic variant damping (d), withal in the first row by analogy with the 
previous case for the combination (�), in the second for the combination (�). Similarly is it in 
the third case of column, where are plotted the resonance bifurcation characteristics for the 
combinational variant damping (h), where in the first row are bifurcation characteristics for 
the combination  (�), in the second then for the combination (�). 

From the comparison of the first row of bifurcation diagrams for the combination (�) is 
seen, that the resonance course )t(y  is in the given frequency range 2160 .;.s ∈ν  both in the 

area of normal mesh ( 0≥)t(y ) and in the area of the jump effects ( )t(s)t(y < ). In the range 

8060 .;.s ∈ν  forms this course with the exception of 660.s ≈ν , when the amplitudes )t(y  

hard grow, the well-ordered bifurcation characteristics. The stiffness function )t(C  by the 

normal mesh 0≥)t(y  converts in the vicinity 660.s ≈ν  and 80.s ≈ν  into the modify 

stiffness function C(t)(H1+H2) (H1,H2 … Heaviside´s function) by the contact bounce of cog 
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faces in gear mesh 0<)t(y . These jump effects of the bifurcation amplitudes here are caused 
by the resonance tuning at the corresponding stiffness level of the function C(t), alternatively 
C(t)(H1+H2), in the given case at the minimal stiffness level minC . In the vicinity of the jump 

660.s ≈ν  i.e. 78060.min =ν against 59850.max =ν , next then in the interval ( )9080 .;.s ∈ν  is 

the solved system in the vicinity 80.s ≈ν  at the stiffness level minC  directly in the resonance 

1=minν . The size of the time course interval of the amplitude size of the relative motion y(t) 

is impacted by the phase shift of relative motion )(ty  towards stiffness function C(t), 
alternatively towards its modify form C(t)(H1+H2), caused by non-linear damping effects 
both the material in gear mesh. 

Fig.3 – Bifurcation resonance characteristics of the system with the nonlinear quadratic 
variant damping (c) –  (�) 00 22 => mk,k ; (�) 00 22 >= mk,k , variant cubic damping (d) – (�) 

00 33 => mk,k ; (�) 00 33 >= mk,k  and combinational variant of damping (h) – 

(�), 0000 3232 ==>> mm k,k`,k,k and (�) 0000 3232 >>== mm k,k,k,k , in the area of 

frequency tuning 2160 .;.s ∈ν  in the phases of normal gear mesh and impact effects in the 

gear mesh. 

With growing sν  then next the resonance bifurcation course decreases tidily – 

continuously. From 11.s ≈ν  the orderly course becomes into the bifurcation characteristics of 

the maximal )t(ymax  and minimal )t(ymin  resonance courses. On the reasons of the growing 

of the unsteady motions can we conclude from the time courses of )t(C , modify stiffnesses 
)HH)(t(C 21+ , courses )t(y  and velocity )t(y′  inclusive of the phases planes 

)}t(y);t('y{  and frequency tuning 051600 .;. ss =ν=ν  and 201.s =ν , s. Fig.4. 
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Fig.4 -  Phase planes )}t(y);t('y{  and time course y(t), y´(t), C(t) and C(t)(H1+H2) of 

nonlinear quadratic damped system for the variant damping  (c) – (�) 00 22 >= mk;k  in 

accordance with Tab.1 and  the frequency tuning 051600 .;. ss =ν=ν a 201.s =ν . 
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From the fullness of phase planes, the time mutual position of )t(C  alternatively 
)HH)(t(C 21+ towards )t(y , )t(y′  result then the conclusions for the steady or the 

heterodyne time course of relative motion. 

In the Fig.4 are given the time courses both )t(y , )t(y′  and )t(C  alternatively 
)HH)(t(C 21+  for 21 and 5 last periods from the revolution cycle of the cog wheels with 

the number of teeth 2123 =,Z  and with the tuning 051600 .;. ss =ν=ν and 201.s =ν . When 

we compare the applicative characteristics from the Fig.3 with the phase planes and time 
courses from Fig.4 for the nonlinear quadratic damping (c) – (�), we see that the bifurcations 
are the result of the phenomena of the heterodyne courses of the relative motion )t(y . They 

are however also the function of frequency tuning maxmin ,νν  of the relevant resulting stiffness 

functions in the gear mesh, pertinently 0=ν  by the contact bounces – impact phenomena in 
the gear mesh and are likewise the functions of the damping both material one and viscous 
mediums in the gear mesh. The steady motion mark out in the phase planes with the thin lines 
of function courses, s. e.g. Fig.4b. 

We pay attention to the influence of the phase shift of )t(y  towards )t(C  alternatively 
towards )HH)(t(C 21+  and the time duration of the component stiffness levels in these 
functions onto the possible growth or the descent of the function amplitude )t(y . 

The points of discreteness A,B in the courses – the jump location in the stiffness 
function )t(C  alternatively )HH)(t(C 21+  mark the discreteness locations in the phase 
planes. The exceptionality in the time courses of relative motion )t(y  in the time 
heteronomous – parametric systems is the periodicity of the courses [7]. 

In Fig.5 is given the exemplification of phase planes });t(y);t('y{ sν  for the nonlinear 
quadraticaly damped system of gearing with six degrees of freedom in the frequency range 

2160 .;.s ∈ν  for the variant damping (in accordance to Tab.1) (c) – (�) 00 22 => mk,k . The 

function courses - loops in the phase planes disappear with the increasing frequency tuning 

sν  and only melt into the discreteness location A,B. They are in accordance to Fig.4 the 

locations, where the stiffness function )t(C alternatively )HH)(t(C 21+ skips from the 

stiffness level minC on maxC  and conversely. The extinction of loops is also the function of 

damping in the gear mesh [5]. 

The influence of the damping size is given e.g. in the Fig.6 in the phase portrait 
});t(y);t('y{ sν  for the frequency range 8060 .;.s ∈ν . The blue courses of phase planes 

present the courses with nonlinear quadratic variant damping  (c) - (�), 00 22 => mk;k   for 

953732 .k =  (i.e. the proportional damping 06202 .D = ), the red courses then for the damping 

5x greater, i.e. 7685192 .k =′  (the proportional damping 3102 .D =′ ). 

From the phase portrait in Fig.6a is evident, that the red courses of more damped system 
with the amplitude )t(y  exceed in the range 610.s ≈ν  the blue courses, i.e. courses of  the 

less damped system. It is the consequence of the phase shift of the amplitude )t(y  in the 

given frequency tuning sν  towards the stiffness function )t(C . This fact is then also evident 

from Fig.6b, where is plotted the phase plane from view in the direction sν . In the red courses  
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Fig.5 – Resonance phase portrait });t(y);t('y{ sν  of nonlinear quadratic variant damping  (c) 

- (�), 00 22 => mk;k (s.Tab.1) in the frequency range 2160 .;.s ∈ν   for the nonconservative 

system of cog wheels with six DOF (in accordance to Fig.1). 
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occur for given frequency tuning and the material damping only the discreteness location 
A‘,B‘. 

 

Fig.6 – Resonance phase portrait });t(y);t('y{ sν   of nonlinear gearing system with 6DOF 
(Fig.1) with nonlinear quadratic damping in gear mesh for the variant damping (Tab.1) (c) - 
(�), 00 22 => mk;k  and the material damping 953732 .k =  and 7685192 .k =′ . 

 

The same phenomenon is with the detailed analysis evident from Fig.7, where are plotted 
besides the courses of two phase planes (blue and red) also the time courses  

)t(y , ),t(y′ )t(y ′′  , stiffness function )t(C , dynamic  )t(Fdyn   and frictional  )t(FT  forces in 

the mesh of gearing with spur gears for two periods 2T. 
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Fig.7 – Resonance phase planes )}t(y);t('y{  of system with kinematic couplings (Fig.1) 

with 6DOF for the nonlinear quadratic variant damping (Tab.1) (c) - (�), 00 22 => mk;k (c) - 

(�), 00 22 => mk;k  and for the material damping 953732 .k =  (the proportional damping 

06202 .D = ) and 7685192 .k =′  (the proportional damping 3102 .D =′ ). 

 

The Fig.6 and Fig.7 explain also the phenomenon from DETAIL  X (Fig.3), i.e. the issue 
of the next resonance bifurcation courses. The loops in the phase courses (Fig.6, Fig.7) forms 
in the frequency range 64060 .;.s ∈ν  for the given nonlinear quadratic variant damping (c) - 

(�) in the resonance characteristics (Fig.3) the next bifurcation course. For the given material 
damping 953732 .k =  (the proportional damping 06202 .D = ) becomes the loop by the tuning 

640.s ≥ν into the discreteness location B in the phase course, as is seen from blue courses in 

the Fig.6b. The red courses form the solution of given system for the greater damping 
7685192 .k =′  (the proportional damping 3102 .D =′ ) with the discreteness location B‘.  

The existence of loops in the courses of the phase planes is the function of damping in gear 
mesh and the frequency tuning sν  of the resulting stiffness function )t(C  alternatively of its 

modify form )HH)(t(C 21+ . 
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