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Summary: The aim of this contribution is the analysis of gémy properties both
the material of gear mechanics in the mesh andlabéecating oil film in the
tooth space at the tooth profile contact bouncés the area of the technological
gear backlash. The damping influence over gear nseahility is pursued on the
special case of the simulation model of the systéim split power flow for the
selected frequency range of the resonance chaiatitey. The nonlinear damping
in gear mesh and in gear system is concerned gignily in the amplitude
progress, greatness and phase shift of relativeandbwards stiffness function
alternatively towards its modify form in gear mesh.

1. Introduction

The nonlinear dynamics of the time-heteronomousairpatric systems has formed especially
in internal dynamics of these in past few decatieseixtra high-actual branch, above all by
the high-speed differential of pseudoplanetarysnaission systems with kinematic couplings.
The damping in the gear mesh both in the normahwerse mesh and in the phase of the
tooth profiles contact bounce by the impact efféatms here the important problems.

The damping in gear mesh and in gear system isecned significantly in the amplitude
progress, greatness and phase shift of relativeomtdwards stiffness function alternatively
towards its modify form in gear mesh. In conseqeenicthese and another actions rise above
resonance characteristics certain singular locatwath jump amplitude course.

Deeper and more accurate dynamic research particulathe aeronautical transmissive
systems in light high-speed turbopropelled unitenf® a basis of their operational reliability
and safety.

The forces and dynamic effects which occur in teargnesh of kinematic pairs are not
only a basis for their quantitative i.e. strengimehsioning, but forms a basis for qualitative
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tribology analysis in complicated gear meshes ifgl sliding) of kinematic pairs of cog
wheels.

One of the topical problems of the tribology in ttignamics of high-speed light gear
systems is among others by theory documented dieigtion of “real” carrying width of
gearing in comparison with “constructional” one.idlis given by the theoretical width of
carrying oily film in gear mesh within the constgressure what is enlarged of areas where
the pressure diminishes into static one in thehtéexe.

One of the main factors which influence this problare dynamic forces in gear mesh of
kinematic pairs e.g. in the planetary gear systeyrithe normal gear mesh.

Fig.1 — The substitutive mathematical — physicatlel@f kinematic pair of gears (in the red
area) of common differential planetary gear systéth double planet wheels.

2. Mathematical-physical model and solution methodogy of dynamic problem

The contribution reassumes onto hitherto publisivedks [4],[5],[6] and [7] and also here
goes out from the solution of special case of impdodiscrete mathematical-physical model
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of kinematic pair of cog wheels from one branctpséudoplanetary systems, s. Fig.1, which
represents system with six degrees of freedom.

The motion in such special case (of common modig,1) of pair wheels with spur
gearing leads by mass discretisation as well askiswence influence of different weak —
analytical and strong — non-analytical nonlineasitsuch as e.g. influence of technological
gear backlash and next by the parametric excitowgces on the solution of six nonlinear
deterministic ordinary differential equations witme variable coefficients [1]

MV"+K(B,8,H V' + > K(D,D;,H )| w'(v) sgn(w'(v')
Ki>1

+C(&,k Y, Uy Vo H TV + > Ce,k,1,,H T)W (V) =F(a, b, # H,r). (1)

K>1
Here v means generally the m-dimensional vector (m = ®©)ieplacement of system
vibration, w"(v) K-th power of vector v, which is defined by expression
wX(v) = D(w(v)wX?(v)). D(w(v)) denote the diagonal matrix, whose elements at the
main diagonal are comprised by elements of veutor)=v. FurthermoreM is the matrix
of mass and inertia forcegK and K are the matrix of linear and nonlinear damping
forces,;C and C are the matrix of linear and nonlinear reversiblees andF (7) is the
vector of non-potential external excitation withngaonentsa,,,b, and with the phase angle

@ . H is the Heaviside’s function, which allows to déseithe motions — contact bounces —
due to strongly non-analytical nonlinearities, é@ample due to technological tooth backlash
s(7). Corresponding linear and nonlinear coefficierftsamping are denoted b§,9, D, D,

linear parametric stiffness function by the symb&sU Vv, and nonlinear parametric
functions, so-called parametric nonlinearitiesthy symboll . £ and k are the coefficients
of mesh duration and amplitude modulation of stiffe function ,C. Derivative by non-

dimensional timer are denoted by dashes,= wt, w, ... mesh frequencyt,... time.

The measure of the dynamic load in the gear medpresented by the dynamic force

Fayn=C(T)Y(T), 2)
wherey(1) is the relative motion in gear mesh in the cowfstae mesh line.

The relative motion as the measure of dynamic lgadi the gear mesh, i.e. in the course
of mesh line, can be described for the generadigtel supported system with bearing motions
{y&z;zaz} of the gear pairs 3,2 by respecting so-called quinof pitch circles,which are

modelled by eccentricities, ,, in the form [1],[3]
Y(T) = Rz + Rop, + Y3 = Y, + € 5ing; — e, sin(A =g, )+ (1), 3

where **f (1) is the deflect function, or the deviation of thegcside form from the ideal

involute, & is the phase angle of angular displacement betvezeentricities 32 and
Rosz are radii of basic circles.
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The analytical form of the resulting stiffness ftion of spur gearing in mes@(1),see
eg.(1) and eq.(2), can be expressedefﬁk(L‘Z} by Fourier’s series in real timein form [1],
[3]

C(t)=C, +Wi%(—l)“ sinn[(¢ - 2) ] cosnat, (4)

where the mean stiffne€k is defined by

C, =KCmaX+W[l+(2£—3)]. (5)

The symbolx =C_ C.__~" represent the amplitude modulation of resultindfnetss

min ~max

function in gear meshC ,,,C,.are minimal and maximal values of stiffness in ge@sh

and ¢ is coefficient of mesh duration, which indicatesshmany teeth pairs is at any one
time in mesh at mesh line. In extreme cases, famgie € =1, is during the mesh time at
mesh line only one teeth pair, in the case ar@ two pairs of teeth whole time in mesh.

In these cases verges the parametric system itbeistiffness with time heteronomous
system on the system with constant coefficientse tiermediate values determine the
proportion of the change of the number of teethspiai the gear mesh at the mesh line. In the
Fourier’s series (43 determines the time proportion the change of tiremal and maximal
resulting stiffnes<C _, ,C,.., during the gear mesh. This fact markedly affeatsdynamics of

system and is connected with the size of amplitnfdeslative motion in gear mesh. That is
influenced by time duration of mesh on that whidtential stiffness level of appropriate
reversible force by the given frequency tuningthe stiffness of teeth is respected in the next
application only the stiffness of the separate cagd their fixation into a solid half-space,
discs are considered absolutely solid.

On the basis of the carried analytical analysisthid weakly and strongly nonlinear
parametric integrodifferential problem with thedng cores in the form of splitting Green’s
resolvents [2], in that the solved differential bdary-value problem was transformed,
concurs now the numerical solution of the givenbpeo. For the numerical analysis of the
dynamic phenomena with impact effects of the cagstem of the kinematic pairs of spur
gears was carried out the methodology of solutipmieans of the simulation model of this
system in the MATLAB/Simulink. [3]

The next factor which influences qualitatively amqaiantitatively the course gf(t) is the
friction in gear mesh or frictional forces in theotion rolling — sliding of kinematic pair —
gearing. They induce the variance of originally sidered constant preload
M =Mz;-(-M,)=konst on M, =M £AM., where AM; is the additional moment from

friction forces.

The friction forces in the gear mesh constitute feparate chapter in the frame of
tribological process of lubrication. The lubricdmgtween frictional faces of cog profiles in
gear mesh suppresses the friction and thereby #a wof frictional faces and add to the
energy efficiency of transmission. The theory of tBHD lubrication in gear mesh of the
finite width at the line contact under the rolling anidisay contact is on the present-day one
of more developed areas, because the constructiad#i of gearing is not the same as the
carrying width of the lubricant film. The high peese in the gear mesh is suppressed in the
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gearing margin in the static pressure. The gedil@smf kinematic pairs pursue complicated
motion rolling - sliding namely sliding resulting &om the gear mesh geometry so from the
relative motions of elastic bearings, i.e. moticasised as by the elasticity of bearings so by
the wheel run-out. Purely rolling motion in gearshebccurs only in the pitch point on the
mesh line by absolutely solid bearing of wheelsthis contribution is applied for qualitative
complying with friction forceF; (t) as the zero approximation only very estimativetjief

Coulomb’s friction
Fr(t)=—f{ y(t)H1+[ y(t)+s(t )] H 2}C(t)(t)sign{ g .,

(6)
+ (&35 Sing; — 8, SIN(A =, 1} SigN 0 e, + (25— 2,)],

wherefr is the coefficient of dry frictiony(t) is the function with values 0.5;1;0;-1;-0.5 with

regard to momentaneous position of gear mesh ah n@s of gearing, that corresponding
with the resulting stiffness function and with thense of action of friction force (s. [3]) and

O, +e, IS the Kronecker’s symbol.

The analysis of dynamic features of solved spexak of general non-linear parametric,
I.e. time heteronomous, system with kinematic cimgigl — spur gears is in this contribution
aimed to the investigation of reasons of forms efonance characteristics of given
mathematical-physical model both by

a) the conservative system in gear mestd
b) non-conservative system.

By reason that in such complicated parts of trassivé systems, e.g. in the gear mesh
“rolling — sliding”, are still unknown neither apptimate data about damping properties or
about damping patterns both in gear mesh and alsieei connection with fixation into gear
rim and discs including hubs like unit, will be gshdamping simulated by means of different
functional relation both in the area of gear maleat normal or inverse mesh incl.
corresponding parts of gear rim and discs, andntiigence of viscous damping in the area of
technological gear backlash, i.e. the influenceilsfin the phase of teeth profile contact loss.
The lightening holes in discs of wheels also maskéufluence the damping, similarly the
viscous damping of lubricant mediums is dependartheir temperature etc.

In this study will be the influence of damping detdamping forces in system of motion
equations (1) of given model of mechanic systemesgnted — modelled by the terms in form

KBS H WV +Y K(D,D H)| w(v') sgr(w/(v')) for K, =23. )

Ky>1

" Under the definition ,conservative system* will vere suppose the system what is depicted in Fig.1 and
described by the system of motion equations (1)aut terms contained in eq. (7) what describeditiear and
nonlinear damping forces. The friction force in geaesh presents certain internal exciting comporwdnt
system. In the contribution it is described by ). and creates also certain dissipation of energyame of
definition of conservative system. Despite of weefkeit in the contribution because induces changes —
alternations of sense of friction which are given only by means of gear mesh geometry at the pgsdimesh

by the pitch point on the mesh line, but also bgrgwhange of relative motions of wheels with étalsearings,
accordingly as certain exciting motion source istsgn.
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The particular combinations of linear and nonlinéamping in gear mesh and in teeth
backlashs(t) by the impact effects are given in Tab.1.

Tab. 1. Combinations of damping in gear mesh.

conser- | drati . Combinations of damping in gear mesh
_ linear quadratic | cybic

vative | damping |damping | 9amping

SYStem lin  gear|in gear|in gear| iy | L+ku | PPV kviku

N gearimesh-L |mesh - Ky | mesh - Ku Ku

mesh
k1 0 X X X X | X X[ % X
ko 0 X X X X X X | x X
Ks 0 X X X X X[ % X
Kim 0 X | X X | X X X | X
Kom 0 X | X X | X X | X X | X
Kam 0 X | X X | % X | X X | X
Symbol
of
marked | e | x| e|x|O|e|x|0le [x|O]e [x|0]e |x|00]e |x
solution
in
figures
Variation a b c d e f g h
Note: ki3 ... material damping in gear mestiy omam... Viscous damping of lubricant

mediums in the tooth backlash (without contemptabf temperature influence;1 — linear, 2
— quadratic, 3 — cubic.

3. The exemplification of analysis of nonlinear daming influence on properties of
resonance characteristics and bifurcation in gear @sh

By reason that in gear mesh of kinematic pairsséileunknownin generalboth theoretical
and experimental patterns about vibration dampivege placed in the equation systems (1)
the expression (7) for vibration damping in geasimand for the qualitative and quantitative
analysis then combination of damping according he fTab.1. By the substitutive
mathematical — physical model of system, s.Figd lay means of its motion equations we
are able to describe all motions, which can dutirgmesh occur, i.e. the normal mesh, the
impact effects in gear mesh with contact bouncesogfprofiles and the inverse mesh, when
the inverse cog faces come in mesh. The dampinthaénall combination of meshes is
described by the coefficientsk,, s. Tab.1l. Besides so-called conservative systemdsh
with k,k., =0, here are given the damping combination in geahe® both linear, quadratic,

cubic and their variation.

This study continue for example the works [4], [E], where are solved some dynamic
problems connected mainly with the linear dampimgéar mesh. In relation to the limiting
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extent of the contribution we present in next adyne dynamic properties of the damping of
relative motiony(t) in gear mesh of kinematic pairs of given parametystem.

All the resonance bifurcation characteristicg;y(t)} have been solved for
£=1569« =05879 C,., =410 [Nmm™];m., =312310°kg]. The values of material
dampingk =k, , both in the area of normal mesh and inverse anevedl as the values of
viscous damping in the tooth backlakh =k, ., (for reason of simplicity we do not take
into consideration the temperature influence) amesitered in all next given examples of

solution identical, i.e. k =k, =395, which corresponds to proportional damping
B=p0,=0062.

T x10° (a+b) T x10° (a+c)
.g. norr;ai r(\)'wesih ' T' o QGD;‘A’ ' : é norrcal gneéh R O@éo g p
] o o : ] -
g7 | o go e CDQI@
5 (E:% ch)oo 5 EE Oéjoo
= o 0 (o] o)
@ @
T e B R T
05 06066 0.8 1.0 11 1.2 v 05 06066 0.8 10 11 12 v
> Vs > Vs
T x10° (a+d) T x10° (h)
.E_. normal mesh o @DQ : : é normal mesh : 1:1 : : 3
=5 N

o

4’¥n

e OP £w
gy &, o £y
5 §= 10660 S|E=
() 2)
@
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Fig.2 — Resonance characteristics of relative motyt) of time heteronomous system

excited by the parametric stiffness functi@t) for the combination of damping in the
gear mesh according to Tab.1:

- (atb) ... conservative>) and linearly damped gear mgsh x ,e)
- (atc) ... conservativg)) and quadratic damped gear mé@shx,e)
- (atd) ... conservative") and cubic damped gear mgshx,e)

- (h) ...quadratic and cubic damped gear mgstx,e)

and for the fifth quasisteady revolution of geareels from the mathematical — physical
model in accordance to Tab.1.
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In the Fig.2 are colour coded the area of normal geesh fory(t)> 0 the area of the
phase of teeth profile contact Io#y(¢)|<s(t),s(t)...the tooth backlash) and the area of

inverse mesh|§/(t )| > g(t)) with the ordering of colours white, yellow andire

The first picture with the damping variant (a+bylaimilarly the courses (a)(<)) in the
Fig.2 forms just comparative courses of resonamegacteristics both of linear damping in
gear mesh and conservative system with the nomlomases, i.e. with nonlinear damping in
the gear mesh, they will be discussed furthermore.

The courses with nonlinear variants of dampindangear meshes differ from linear ones,
in detail discussed in [4], [7], ... , hot only guatively by the singular incontinuity locality —
jumps, but also quantitatively in the courses aforeance characteristics. The give courses
with nonlinear damping in the gear mesh differ aba¥l in the variantsi{,x) and ¢) .
Whereas the variants1{x) marks out with continuous courses in whole givesonance

range VSD<O.6;1.2> and quantitatively in the normal mesh, i.e. fgft)> , differ just

slightly (the influence of the second and the tipiodver of y'(t) in (7)), the variants with the
marker ¢) differ by the existence of singular i.e. jump dton in the vicinityv =0. 66

andv,=0.8 but with different quantitative dissimilarity likese in linear cases.
Simultaneously these courses de facto do not diéee in the area =<O.66;O.8> , in the

area VSD<O.8;1.2> differ from the singular locatiorv,=0. r@&xt both qualitatively and
quantitatively. The coursese)(round off from the jump locatiorv,=0. &or the cubic

damping (d) and for the composite damping (h) iargeesh and the pea¥, . [(t) shifts

fromv, = 0.8continuously to higher values of,.

In Fig.3 are colour-coded marked the areas of gesmh, i.e. with white colour the area of
normal mesh y(t)= ®and with yellow colour the area of jump effeqtya(()| <g(t), where

g(t)... teeth backlash).

In the first column of this picture are plotted thiéurcation resonance characteristics of
quadraticvariant damping (c), in the first row for the comdsiion ¢), in the second one then
for the combination {).By analogy forms the second column the bifurcatresonance
characteristics of cubic variant damping (d), witira the first row by analogy with the
previous case for the combinatior),(in the second for the combinatian)( Similarly is it in
the third case of column, where are plotted themasce bifurcation characteristics for the
combinational variant damping (h), where in thetfiow are bifurcation characteristics for
the combination ¢, in the second then for the combinatiar).(

From the comparison of the first row of bifurcatidiagrams for the combination)(is

seen, that the resonance couy$e) is in the given frequency range [(0.6;1.2) both in the
area of normal meshy(t)= )@nd in the area of the jump effectg(€¢)| < (t)). In the range

V D<0.6;0.8> forms this course with the exceptionwf=0. ,688hen the amplitudey(t)
hard grow, the well-ordered bifurcation characterss The stiffness functiolC(t) by the
normal meshy(t)=0 converts in the vicinityv,=0. 66and v, =0. 8 into the modify
stiffness functiorC(t)(H1+H2) (H1,H2 ... Heaviside's function) by the contact bounceaxf c
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faces in gear mesk(t) < .Ohese jump effects of the bifurcation amplitutese are caused
by the resonance tuning at the corresponding stffrievel of the functio@(t), alternatively
C(t)(H1+H2), in the given case at the minimal stiffness le@g|,. In the vicinity of the jump

v, =0.66 i.e. v, =0.7806gainstv,,,, = 0. 5985 next then in the intervak, 1(0.8;0.9) is
the solved system in the vicinity, =0. & the stiffness leveC,, directly in the resonance
Viin =1. The size of the time course interval of the atagk size of the relative motioft)

iIs impacted by thephase shiftof relative motion y(t ) towards stiffness functior©(t),

alternatively towards its modify forn€(t)(H1+H2), caused by non-linear damping effects
both the material in gear mesh.

o 10 option (¢) (*) g X10 option (d) <(*) o 10" option (h) <(#)
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Fig.3 — Bifurcation resonance characteristics of the systeith the nonlinear quadratic
variant dampindc) — (O)k, >0k,,, =0; (¢) k, =0k, >0, variant cubic damping (d) £§
k;>0k,,=0; (¢) k;=0k;,>0 and combinational variant of damping (h) -
(O0),k, >0k, >0 ,k,,=0k,, =0and @) k,=0k,=0k,,>0k,,>0, in the area of
frequency tuningy, 0(0.6;1.2) in the phases of normal gear mesh and impacttsffieahe
gear mesh.

With growing v, then next the resonance bifurcation course deesedslily —
continuously. Fromv, =1. Xhe orderly course becomes into the bifurcaticaratteristics of
the maximaly, . (t) and minimaly,, (t) resonance courses. On the reasons of the growing
of the unsteady motions can we conclude from time ttourses oC(t), modify stiffnesses
C(t)(H1+H2), courses y(t) and velocity y'(t) inclusive of the phases planes
{y (t);y(t)} andfrequency tuningv, =0.60;v, =1.05 andv, =1. 20 s. Fig.4.
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From the fullness of phase planes, the time mupaaition of C(t) alternatively
C(t)(H1+H2)towards y(t), y'(t) result then the conclusions for the steady or the
heterodyne time course of relative motion.

In the Fig.4 are given the time courses baitt), y'(t) and C(t) alternatively
C(t)(H1+H2) for 21 and 5 last periods from the revolution eyof the cog wheels with
the number of teetlZ,, = 2and with the tuningy, =0.60,v, =1.05and v, =1. 20 When

we compare the applicative characteristics from Rige3 with the phase planes and time
courses from Fig.4 for the nonlinear quadratic dagniic)— (»), we see that the bifurcations
are the result of the phenomena of the heterodgneses of the relative motiog(t). They

are however also the function of frequency tumng, v, of the relevant resulting stiffness

functions in the gear mesh, pertinently=  b@ the contact bounces — impact phenomena in
the gear mesh and are likewise the functions ofddmaping both material one and viscous
mediums in the gear mesh. The steady motion markndbhe phase planes with the thin lines
of function courses, s. e.g. Fig.4b.

We pay attention to the influence of the phase shify(t) towardsC(t) alternatively
towards C(t)(H1+H2) and the time duration of the component stiffnessls in these
functions onto the possible growth or the descéttiefunction amplitudey(t).

The points of discreteness A,B in the courses —juh@ location in the stiffness
function C(t) alternatively C(t)(H1+H?2) mark the discreteness locations in the phase

planes. The exceptionality in the time courses elative motion y(t) in the time
heteronomous — parametric systems is the perigditithe courses [7].

In Fig.5 is given the exemplification of phase @afy (t); y(t);v,} for the nonlinear
guadraticaly damped system of gearing with six elegrof freedom in the frequency range
v D<0.6;1.2> for the variant damping (in accordance to Tabc))-(0) k, >0k, =0. The

function courses - loops in the phase planes desapwith the increasing frequency tuning
v, and only melt into the discreteness location ATBey are in accordance to Fig.4 the

locations, where the stiffness functid@(t)alternatively C(t)(H1+H2)skips from the
stiffness levelC_, on C . and conversely. The extinction of loops is alse fiinction of
damping in the gear mesh [5].

The influence of the damping size is given e.g.the Fig.6 in the phase portrait
{y(t);y(t);,v .} for the frequency rangeSD<O.6;O.8>. The blue courses of phase planes
present the courses with nonlinear quadratic vaidamping (c) - (L!),k, >0;k,,, =0 for
k, =3.9537 (i.e. the proportional dampinD, =0.062), the red courses then for the damping
5x greater, i.ek;, =19.7685 (the proportional dampin®, =0.31).

From the phase portrait in Fig.6a is evident, thatred courses of more damped system
with the amplitudey(t) exceed in the range, =0. @he blue courses, i.e. courses of the
less damped system. It is the consequence of thsep$hift of the amplitudg(t) in the
given frequency tuning, towards the stiffness functio@(t). This fact is then also evident
from Fig.6b, where is plotted the phase plane fuggw in the directionv,. In the red courses
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() k. >0k, =0

a)

»y(t) [em]

c)

»y(t) [em]

o Ve oo 127 4 y'(i) [c?ns1]
Fig.5 — Resonance phase portfait(t ); y(t );v,} of nonlinear quadratic variant damping (c)

- (1), k, >0;k,,, =0(s.Tab.1) in the frequency range D<0.6;1.2> for the nonconservative
system of cog wheels with six DOF (in accordancEi¢pl).
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occur for given frequency tuning and the materiamging only the discreteness location
A'B'.

(LD k, >0k, =0

————»y(t) [cm]

———»y(t) [cm]

> y'(t) [ems]

Fig.6 — Resonance phase portigyt(t);y(t);v,} of nonlinear gearing system with 6DOF
(Fig.1) with nonlinear quadratic damping in gearsméor the variant damping (Tab.1) (c) -
(1), k, >0;k,,, =0 and the material dampirnkg, =3.9537 and k;, =19.7685.

The same phenomenon is with the detailed analysi®mt from Fig.7, where are plotted
besides the courses of two phase planes (blue @d) also the time courses
y(t),y'(t), y'(t) , stiffness functio€(t), dynamic Fy,(t) and frictional F(t) forces in

the mesh of gearing with spur gears for two peribs
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Fig.7 — Resonance phase plafes(t);y(t)} of system with kinematic couplings (Fig.1)
with 6DOF for the nonlinear quadratic variant dangp(Tab.1) (c) -(()),k, >0;k,,, =0(c) -
(L1),k, >0;k,,, =0 and for the material damping, =3.9537 (the proportional damping
D, =0.062) and k;, =19.7685 (the proportional dampin®, = 0.31).

The Fig.6 and Fig.7 explain also the phenomenom fdETAIL X (Fig.3), i.e. the issue
of the next resonance bifurcation courses. Thedaohe phase courses (Fig.6, Fig.7) forms

in the frequency range, D<0.6;0.64> for the given nonlinear quadratic variant damgio)g-
(1) in the resonance characteristics (Fig.3) the h#utcation course. For the given material
dampingk, =3.9537 (the proportional dampiri@, = 0.062) becomes the loop by the tuning
v, = 0.64into thediscreteness location B in the phase course, seeis from blue courses in
the Fig.6b. The red courses form the solution ofegisystem for the greater damping
k, =19.7685 (the proportional dampin@®, = 0.31) with the discreteness location B'.

The existence of loops in the courses of the pp&sees is the function of damping in gear
mesh and the frequency tuning of the resulting stiffness functio@(t) alternatively of its
modify form C(t)(H1+H2).
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