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FETI-BASED HOMOGENIZATION OF FIBROUS COMPOSITES
WITH INTERFACIAL DEBONDING

P. Gruber*, J. Zeman**

Summary: In this contribution, we present an efficient FETI-based atho for
homogenization of fibrous composite materials with impeiféerfaces. The pro-
posed formulation allows for a seamless combination of thiily-rigid connec-
tion, monotone traction-separation relations duekuouis and Bittnar(20089 and
contact conditions@ost@l et al, 2007). The performance of the developed algo-
rithm is illustrated on two representative numerical exaaspl

1 Introduction

Failure in fiber-reinforced composites is often initiatedree fiber-matrix interface and hence
initial as well as load-induced debonding phenomena areuzial importance when assessing
overall behavior of composites, cfC0x and Yang2006. The numerical modeling of interfa-
cial behavior within the framework of displacement-bagedngal) Finite Element method is
usually based on introduction of interfacial elementsvailhg for the appearance of a strong dis-
placement discontinuity on the surface separating a filoen & matrix, see e.d.(and Ghosh
2004 Matois et al, 2007) and references therein. Specific material behavior iswatdea for
by using an appropriate traction-separation law, relatiregdisplacement jump to the inter-
facial tractions via an (possibly non-linear) interfacstiffness. When describing the per-
fect bonding between phases, however, the theoreticdilyitm interfacial stiffness leads to
an ill-conditioned FEM problem resulting in critical nunes-induced stress oscillations, see
e.g. Areias and Rabczyk008 for an excellent recent survey on this topic. To overcone th
intrinsic problem, in the current paper we investigate gpliagbility of duality-based solvers
to the homogenization of composites with imperfect intagbbonding.

The rest of the paper is organized as follows. A brief ovevwd the first-order pe-
riodic homogenization is presented in Sectidnin Section3, we discuss the numerical
resolution of the unit cell problem using the Finite Elemd&eiaring and Interconnecting
(FETI) method Farhat and Roux1991). Exploiting advances in duality-based solvers due
to Dos#tl et al. (2007 andKruis and Bittnar(2008, the algorithm is extended to account for
a possible contact between fibers and matrix as well as bimiteerfacial strength. Finally,
performance of the algorithm is illustrated in Sectibon two representative examples.

Throughout the text, the standard matrix formulation of theite Element method,
e.g. Bittnar andSejnoha1996, combined with the Voigt representation of symmetric seto
and fourth-order tensors, cfMikipedia, 2007, is systematically employed.
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Figure 1: Decomposition of PUC.

2 Overview of periodic homogenization

In the current Section, we briefly overview essentials ofrtbmogenization theory. Additional
details can be found in, e.g., iM{chel et al, 1999 Somolow, 2007 Gruber 2007).

2.1 Unit Cdll

Consider a Periodic Unit Cell (PUC) of a composite material Wottg fibers, see Figuréa
Within the PUC, we distinguish disjoint sub-domain§)) with associated boundari€s’. In
the following text,i = 1 is reserved for the matrix phases, whergas2, 3, ..., n corresponds
to the heterogeneities (fibers) appearing in the PUC. Thexgtdolds

o= oo, 1)
i=1

and the following identities are valid:
QI NO® =0, for r#s, where r=1,2,..n and s=1,2,....n, 2)
Q"0 =0, for r+#s, where r=2,3,...n and s=2,3,...n. (3)

It is also useful to introduce internal interfaces (dendigdsquare brackets instead of round
ones):

il =0%na", .= oo, (4)
j=2

i.e. the boundanf’l’! (a part of ")) correspond to the interface betwegtth fiber and the
matrix phase, whilé& is reserved for the matrix interface, cf. Figue Figurelc. Note that
in order to unify the notation, indexis assumed to range frointo n, while j € {2,3,...,n}.

2.2 Fieddson PUC

Let a vectory define the position of a point on the micro-scale (i.e. on thsure of the domain
ﬁuc). The general field (y) (a scalar, a vectorial or a tensorial one), the spatial aesodthe
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function ( f) and its fluctuating componelit are defined as

o) = [ F) e fy) =)~ (f(y), Vye @,

4] Joue
Moreover, it will be useful in the sequel to introduce a domaise decomposition of a general
function f in the form:
fY(y), vyeQW
fA(y), vyeQ®
fly) = : : (5)

f(y), vy e

In addition, fields defined oRl! will be denoted agl’.* Finally, we introduce normal vectors
nl! (y) to interfaced .. It holds, cf. Figurelb and Figurelc;

n (y) = —n" (y), Vvyerl. (6)

An outer normal to the se&®““, which is defined on the whole boundar{/¢, is denoted as
n“C (y).

2.3 Strain approach to homogenization

In the sequel, thetrain controlledapproach to the computational homogenization is adopted,
see Michel et al, 1999. Therefore, the PUC is subject to the loading ImgacroscopistrainE,
which, when combined with the governing equations of cantm mechanics, yields leads to

a distribution ofmicroscopicdisplacements, strains and stresses within the PUC. Thagerer
value of the stress then yields the value of macroscopiss¥e defining thehomogenized
constitutive equation.

2.4 Boundary conditions

Following the standard procedure of the first-order homaggion, we assume the following
decomposition of the displacement field

u® (y) = u*m +u® (y), (7)

where (in the tensorial notatiom)°™ = E - y corresponds to an affine field duelp whereas
the second part arises due to heterogeneity of the PUC. Thesponding strains can we written
in the form

e’ (y) =E+eW(y), ®)

The macro-micro strain compatibility requires the validipbf the following iden-
tity (Michel et al, 1999:

# 0 ()le ©n (y)ar =0 ©

ITherefore the valuegl! (y) may be considered as traces of a figltl (y) on the interfac&l’], cf. (Rektorys
2007).
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which corresponds to generalized kinematic boundary tiomgdi posed on the fluctuating dis-
placement field1* (y).?
Next, we need to satisfy the energetic consistency comditioghe form of the Hill lemma

(o (y)'ely)) (11)

<

CO'C W) = g h PO W )l dr =0 (12)

wherep (y) denotes surface tractions on the boundafy.

It can be shown that the strain and the energetic consistemrgtitions can be satisfied
when adopting a convenient choice of the kinematic or thiécdb@mundary conditions. In our
case, the periodic kinematic and the anti-periodic statignilary conditions are employed to
that purpose. Then, for any vectgré! andy*2 lying on two congruent boundaries, we have:

w () = () A e () =-p () A n" ") = 0™ (). (13

3 FETI-based solution of unit cell problem

For a numerical solution of the local problem of the homogation, we use the FETI method
which is effective even in the case of the imperfect bondihganstituents. Following the
original treatmentKarhat and Rouyx1991), FETI is based on the modified Lagrange principle
where surface tractions”! (y) (defined on the interfacdd? with orientation identical to the
outer normaml! (y)) enforce the inter-domain displacement continuity. lidais from the
equilibrium equation on the interface that the surfacetimas A (y) has to verify relations
analogous tof):

A (y) = =AVl(y), vyerll (14)

3.1 Energy functional

The energy functiondll(u (y), Al (y)) for homogeneous linear elastic constituents, which are
characterized by a phase-wise constant material stifimessx L(*), can be expressed as:

L[

M A"w) = 53 [ & ®)'L0 @) (v)ao

ps /m A (y) (@ (y) - a () (15)

2The operatiom (y) ® b (y) appearing in Equatior] is related to an outer product defined for two vectors
a(y) andb (y) as follows:

(am b +b)a" (). (10)

N | =

a(y)@b(y):=
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where a functiory (y) denote a test function corresponding to a funcidyy). The functional
IT is defined on a séby;:

Dn = {u(y)=Ey+u'(y), VyeQ“
u*(y) =0, Vyel%; u*(y)periodic Vy eI}

x {0 <A 0l (v) < A (v), vy el

Mo () <A ()t () < A (), Wy € T (16)
where A s (y) andALf]maX (y) correspond to an initial normal and tangential strength+if
interface, respectively and! (y) denotes a tangent to the interfdce with clockwise orienta-
tion with respect to the normal vectat! (y). Finally, % is a part of the boundaiy“ (usually
the corners of a rectangular PUC), where the Dirichlet bogndanditions are imposed, since
the periodic boundary conditions prevent only the rigidyooatation of the PUC.

By splitting the microscopic fields(y) andu (y) into the macroscopic and the fluctuating
constituents, and disregarding the constant terms appggeiaril, we obtain a new functional

L

ok 1 - i ~ k(1 ~x(1 Tr G ~ k(1
o (y),A (y) = 52/9(_) 2E'LY (y)e® (y) + & (y) LY ()@ (y) dQ
=1 ‘

w3 [ A @) - ) ar 7)

now defined on a set
Do = {u*(y)=0, Vyel%; u'(y)periodic VyeI“}
x o< Ayl () < AL (y), Wy el

At () € AT )6 (v) < A (), Wy €T (18)

3.2 Approximation

Following the basic idea of the FETI-based discretizatiwa, approximate the field of fluc-
tuating displacements* (y) independently on individual domairg®” with the aid of basis
functions organized into a matriX_’ (y) and coefficients of the linear combination organized
into a vectord':

w (y) ~ N (y)d), vyel (19)

u

Consequently, the field of fluctuating straiigy) is related to the nodal displacements via the

geometric matrixB” (y):
e (y)»BY (y)dy, vyea®. (20)

u

The approximation of the surface tractiokd (y) is performed in the analogous way:

A (y) = N (y)d)), vy e Tl (21)
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Altogether, the approximate value of the functional reesithe following form:

OB () LOBY (y)d(') a0

u

. 1 <& N
O(d,. dy = 52 /Q ) <2ETL<Z>B§;> (y)d? 4 d¢
=1

_ T T . )
3 [ a0 (N a) - N () ar (22)
- '

3.3 Minimization problem

Since the matriceB” (y)TL@)BEf) (y) are positive, the global minimum of the functiéh
coincides with the stationary point defined by optimalityditions

00

a7 —0 & KO0dD=f)_gh'qll (23)
90 S

m:o & Y EYa)) =o. (24)
A =

In the conditionsZ3-24), we have employed the following substitutions:

KO — [ BY ) 'LUBY () d (25)
Q)

£fO = —/ ETLOBY (y)dQ, (26)
Q()

eV = —Z N) ) N (y) (27)

Tl

£ _ / N () N () (28)

T

Following the analogy with the Finite Element treatment ofnamics of structures,
e.g. Bittnar andSejnoha1996), the matrices£” defined by 27) and @8) will be calledcon-
sistent while the Boolean matrices (sparse matrices containingamgs and zeros) are referred
to aslumpedones. The latter option is used in the actual implementatdnch corresponds
to enforcing the displacement compatibility conditiongndividual nodes of the finite element
mesh.

3.4 Dual formulation

Now we proceed with expressing the coefficients of quctl@adispIacementslif) from the
systems of equationg8®) in the form

4 = KO <f _ gl d&u) +ROAY. (29)
The first termK ' (f(i) — 8(")ng1> in relation @9) corresponds to the particular solution of
thei-th component of the systerig), which is expressed by the help of the generalized inverse

matrix K" (seeGruber(2007 or Kruis (2009 for further discussion), replacing the inverse
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decomposition

Figure 2: Graphical interpretation of constitutive law oterface.

matrix for singularK . The second ternk(?'d} appearing in Equatior2) corresponds to
a homogeneous solution of the system of #tle component of the systerd3), expressed as
the linear combination of rigid body motio®® with coefficients of the linear combination
dﬁ?. Next, we substitute the coefficients of fluctuating displ‘aentsd&i) from relations 29) to
system 24) and add the solvability condition81) to account again for a possible singularity
of matricesK ®:

zn: cOKOT g Z E ’)R(Z)d Z gORKOT6) (30)
i=1

RO" (f@ _£ ’)Td[”> (31)

Elimination of the primary unknowng'” in (23-24) leads to a dual problem, formulated in
terms ofd&” anddg). This problem can be efficiently solved using the Modified Qgate Gra-
dient (MCG) method, augmented by the projection step to ertersolvability condition31),
see againKruis, 2006 or (Grubet 2007 for further details.

3.5 Constitutivelaw on interface

As the final ingredient of the problem formulation, the partar form of the constitutive law is
shown in Figure?. In the framework of the proposed FETI-based algorithmhsuconstitutive
assumption leads to the following conceptual implemeoadif the debonding problem:

INPUT 1: properties of individual constituents, initial conditeban interface

INPUT 2: normal\;max () and tangentiahl'l . (y) strength of interface
INPUT 3: final macroscopic load (macro- strdﬁ)
INPUT 4: N = number of load steps
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Y2

y (a) hexagonal microstructure (b) square microstructure
1

Figure 3: PUCs used in numerical experiments.

LOOP1: fori=1to N
Apply macrostrain/N - E to a PUC
LOOP 2: repeat until the interfacial conditions are unchanged
MCG = evaluate actual values of normal and tangential surfacédres
SWITCH (in terms of actual values of surface tractions)
1. Domain of initial interface strength (Figure?2)
= surface tractions are unchanged
2. Domain of contact problem (Figure?2)
= surface tractions in tangential direction set to zero\ersible)
3. Domain of complete decomposition (Figure2)
= surface tractions in both direction set to zero (irrevededib
END SWITCH
END LOOP 2
computation of actual primal unknowns — evaluation of dispments inside the domaias >
ENDLOOP 1

Note again that, due to the adopted lumped form of the “caitti matrices€®, the con-
stitutive law is applied in discretized form, i.e. the valoesurface tractions is converted to
equivalent nodal forces.

4 Numerical examples

In this section we show results of selected numerical erpents obtained using an in-house
code implemented in MrLAB 7.1. All reported examples were executed on one of the PUCs
appearing in Figuré.

4.1 Controlled perfect debonding of constituents

In this experiment, we compare the macroscopic stiespmputed using the FETI method
with the results available irSgjnoha and Srinivad 998, corresponding to the hexagonal mi-
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Figure 4. Dependence on the overall response on the delgpadgiec.

crostructure represented by a PUC shown in Fi@ar&oth the plane stress and the plane strain
assumptions were used in the analysis to provide a companigh a three-dimensional simu-
lations Sejnoha and Srinivad998. The PUC cell with 4 of fibers ¢ = 0.4) and material
data 0 o

E,’ = 88GPa E,”7 = 200GPa
S0 — 0209 A" L) Z gagg (32)

were used. Note tha‘ijy) and v~ denote the Young modulus and the Poisson ratio ofithe
phase, respectively. The PUC was loaded by three elemdntatycases

E=[1,0,0", E=10,1,0", E=10,0,1]", (33)

and the corresponding macroscopic strEswas computed to arrive at the effective stiffness
matrix Le!. The resulting dependence of the effective stiffness maitmnithe debonding angle
« appears in Figurda The dashed line and the dot-and-dashed line display thdtsesm-
puted for the plane strain and the plane stress, respeactiMat continuous line represents the
results from éejnoha and Srinivad 999 (i.e. the three-dimensional PUC). Note that all data
correspond to the casethout contact conditions, i.e. the individual constituents caarkap
freely. Evidently, very good match between reference tesuld the FETI-base procedure has
been achieved. Moreover, it can be seen that the plane stsponse provides an upper bound
to the three-dimensional response, while the plane stoessitons result in a lower bound.

To further illustrate the influence of the contact conditioetween the individual con-
stituents, the PUC was loaded by the shear macroscopin strai

E =[0,0,0.2]". (34)

The deformed shapes of the PUCs are compared in Figuigure4b offers additional quan-
titative comparison between these two cases. The dashedaamtiiuous lines in Figurdb
denote the results without and with activation of the cantaspectively. The FETI-based al-
gorithm correctly prevents the interpenetration of indinal phases, see Figutbe, which leads
to a slightly more stiff shear response and to the appeax#raseadditional normal stress when
compared with the former approach.
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(a) with penetration (b) without penetration

Figure 5: Overall deformation of PUC.

4.2 Load induced complete debonding of constituents

Finally, Figure6 plots the macroscopic stress-strain curves, determingdéaomposite shown
in Figure3bin the plane stress state, subject to the macroscopic dafanm

E =1[0.2,0,0]". (35)
and the following material data are used in the simulation

e, = 100GPa E,? = 500GPa
and

v = 04 2 = 0.2 (36)

The continuous line and dotted lines, appearing in Figir@isplay the normal macroscopic
stressX: in the direction of the nonzero macroscopic deformatiband orthogonal direction
of the nonzero macroscopic deformatiBin, respectively. Recall that in Figu@ A max and
AE}naX denote the normal and the tangential strength whole irderfeespectively; the symbol
j stands for a unit of length. It can be seen that the proposettncal method is able to cap-
ture the complex interaction between the debonding anditiee-phase contact; a mechanism
which is notoriously difficult to capture by existing anabtgl approaches of the continuum
micromechanics.

5 Conclusions

In the current work, a brief overview of a FETI-based procedior the homogenization of
composite materials developed i@riabetr 2007 has been presented. The most important con-
clusions can be summarized as follows:

e The proposed numerical scheme is very efficientin handhagtoblems, which are diffi-
cult to be treated by the displacement-based FEM approacichsas the non-penetration
of individual phases and traction-based interfacial atutste laws.

e The method is fully capable of capturing complex non-linemponse typical of hetero-
geneous materials.
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Figure 6: Effective stress-strain diagrams. Initial ifaee strength iGN /j.

In the current state, the method is limited to specific, gsiiteplistic, constitutive laws for
the interfacial region. Moreover, to fully assess the adddde of the duality-based approach,
more extensive comparison with the existing micro-meat@nmethods should be performed.
These topics are currently under investigation and willdported separately.

Acknowledgments

Financial support of this work provided by the Grant Agenéyhe Czech Republic, projects
GACR 106/08/1379 and GBR 106/07/1244, is gratefully acknowledged.

References

Areias, P. M. A. and Rabczuk, T. (2008). Quasi-static cradpgagation in plane and plate
structures using set-valued traction-separation lawdernational Journal for Numerical
Methods in Engineering/4(3):475-505.

Bittnar, Z. andSejnoha, J. (1996)Numerical methods in structural mechanicASCE Press
and Thomas Telford, Ltd, New York and London.

Cox, B. and Yang, Q. (2006). In quest of virtual tests for suialt composites. Science
314(5802):1102-1107.

Dos#l, Z., Hoiék, D., and Vlach, O. (2007). Feti-based algorithms for nilodgof fibrous

composite materials with debondingMathematics and Computers in Simulatiof6(1-
3):57-64.

Farhat, C. and Roux, F.-X. (1991). A method of finite elemeningeand interconnecting and

its parallel solution algorithminternational Journal for Numerical Methods in Engineerjng
32(6):1205-1227.

267



Gruber, P. (2007). Homogenization of composite materiate wnperfect bonding of con-
stituents. Master’s thesis, Czech Technical UniversitggBe. (in Czech),
http://mech.fsv.cvut.cz/ ~ grubepav/download/gruber_master_thesis.pdf

Kruis, J. (2006). Domain Decomposition Methods for Distributed Computir@axe-Coburg
Publications, Kippen, Stirling, Scotland, druh edition.

Kruis, J. and Bittnar, Z. (2008). Reinforcement-matrix iatgron modeled by feti method. In
Domain Decomposition Methods in Science and Engineering, ¥sges 567-573. Springer
Verlag.

Li, S. and Ghosh, S. (2004). Debonding in composite micucstires with morphological
variations.International Journal of Computational Methaqdg1):121-149.

Matous, K., Inglis, H. M., Gu, X., Rypl, D., Jackson, T. L., and GelldeP. H. (2007). Mul-
tiscale modeling of solid propellants: From particle packio failure. Composites Science
and Technology67(7-8):1694—-1708.

Michel, J. C., Moulinec, H., and Suquet, P. (1999). Effectiveperties of composite materi-
als with periodic microstructure: a computational apphoaComputer Methods in Applied
Mechanics and Engineerind72(1-4):109-143.

Rektorys, K. (2007)Variational Methods in Mathematics, Science and EngimegrSpringer
Verlag, second edition.

Somolo, A. (2007). Homogenization applied to civil engineerityistures. Master’s thesis,
Czech Technical University, Prague. (in Czech),
http://mech.fsv.cvut.cz/ ~ zemanij/teaching/theses/somolova_07.pdf

éejnoha, M. and Srinivas, M. (1998). Modeling of effectivegerties of composites with
interfacial microcracks using PHA moddéuilding Research Journaf6(2):99-108.

Wikipedia (2007). \Voigt notation — Wikipedia, The free enlpmedia. [Online; accessed
17-December-2007].

268


http://mech.fsv.cvut.cz/~grubepav/download/gruber_master_thesis.pdf
http://mech.fsv.cvut.cz/~zemanj/teaching/theses/somolova_07.pdf

	Introduction
	Overview of periodic homogenization
	Unit Cell
	Fields on PUC
	Strain approach to homogenization
	Boundary conditions

	FETI-based solution of unit cell problem
	Energy functional
	Approximation
	Minimization problem
	Dual formulation
	Constitutive law on interface

	Numerical examples
	Controlled perfect debonding of constituents
	Load induced complete debonding of constituents

	Conclusions

