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FETI-BASED HOMOGENIZATION OF FIBROUS COMPOSITES
WITH INTERFACIAL DEBONDING

P. Gruber∗, J. Zeman∗∗

Summary: In this contribution, we present an efficient FETI-based algorithm for
homogenization of fibrous composite materials with imperfect interfaces. The pro-
posed formulation allows for a seamless combination of the initially-rigid connec-
tion, monotone traction-separation relations due toKruis and Bittnar(2008) and
contact conditions (Dost́al et al., 2007). The performance of the developed algo-
rithm is illustrated on two representative numerical examples.

1 Introduction

Failure in fiber-reinforced composites is often initiated at the fiber-matrix interface and hence
initial as well as load-induced debonding phenomena are of crucial importance when assessing
overall behavior of composites, cf. (Cox and Yang, 2006). The numerical modeling of interfa-
cial behavior within the framework of displacement-based (primal) Finite Element method is
usually based on introduction of interfacial elements allowing for the appearance of a strong dis-
placement discontinuity on the surface separating a fiber from a matrix, see e.g (Li and Ghosh,
2004; Matoǔs et al., 2007) and references therein. Specific material behavior is accounted for
by using an appropriate traction-separation law, relatingthe displacement jump to the inter-
facial tractions via an (possibly non-linear) interfacialstiffness. When describing the per-
fect bonding between phases, however, the theoretically infinite interfacial stiffness leads to
an ill-conditioned FEM problem resulting in critical numerics-induced stress oscillations, see
e.g. (Areias and Rabczuk, 2008) for an excellent recent survey on this topic. To overcome this
intrinsic problem, in the current paper we investigate an applicability of duality-based solvers
to the homogenization of composites with imperfect interfacial bonding.

The rest of the paper is organized as follows. A brief overview of the first-order pe-
riodic homogenization is presented in Section2. In Section3, we discuss the numerical
resolution of the unit cell problem using the Finite ElementTearing and Interconnecting
(FETI) method (Farhat and Roux, 1991). Exploiting advances in duality-based solvers due
to Dost́al et al.(2007) andKruis and Bittnar(2008), the algorithm is extended to account for
a possible contact between fibers and matrix as well as limited interfacial strength. Finally,
performance of the algorithm is illustrated in Section4 on two representative examples.

Throughout the text, the standard matrix formulation of theFinite Element method,
e.g. (Bittnar andŠejnoha, 1996), combined with the Voigt representation of symmetric second-
and fourth-order tensors, cf. (Wikipedia, 2007), is systematically employed.
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Figure 1: Decomposition of PUC.

2 Overview of periodic homogenization

In the current Section, we briefly overview essentials of thehomogenization theory. Additional
details can be found in, e.g., in (Michel et al., 1999; Somolov́a, 2007; Gruber, 2007).

2.1 Unit Cell

Consider a Periodic Unit Cell (PUC) of a composite material withlong fibers, see Figure1a.
Within the PUC, we distinguishn disjoint sub-domainsΩ(i) with associated boundariesΓ(i). In
the following text,i = 1 is reserved for the matrix phases, whereasi = 2, 3, . . . , n corresponds
to the heterogeneities (fibers) appearing in the PUC. Therefore, it holds

ΩUC :=
n

⋃

i=1

Ω(i), (1)

and the following identities are valid:

Ω(r) ∩ Ω(s) = ∅, for r 6= s, where r = 1, 2, ..., n and s = 1, 2, ..., n, (2)

Ω
(r)

∩ Ω
(s)

= ∅, for r 6= s, where r = 2, 3, ..., n and s = 2, 3, ..., n. (3)

It is also useful to introduce internal interfaces (denotedby square brackets instead of round
ones):

Γ[j] := Ω
(1)

∩ Ω
(j)

, Γ[1] :=
n

⋃

j=2

Γ[j]. (4)

i.e. the boundaryΓ[j] (a part ofΓ(j)) correspond to the interface betweenj-th fiber and the
matrix phase, whileΓ[1] is reserved for the matrix interface, cf. Figure1b, Figure1c. Note that
in order to unify the notation, indexi is assumed to range from1 to n, while j ∈ {2, 3, . . . , n}.

2.2 Fields on PUC

Let a vectory define the position of a point on the micro-scale (i.e. on the closure of the domain
Ω

UC
). The general fieldf (y) (a scalar, a vectorial or a tensorial one), the spatial average of the
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function〈f〉 and its fluctuating componentf ∗ are defined as

〈f (y)〉 :=
1

|ΩUC|

∫

ΩUC

f (y) dΩ, f∗ (y) := f (y) − 〈f (y)〉, ∀y ∈ ΩUC.

Moreover, it will be useful in the sequel to introduce a domain-wise decomposition of a general
functionf in the form:

f (y) =



















f (1) (y) , ∀y ∈ Ω(1)

f (2) (y) , ∀y ∈ Ω(2)

...
f (n) (y) , ∀y ∈ Ω(n)

. (5)

In addition, fields defined onΓ[i] will be denoted asg[i].1 Finally, we introduce normal vectors
n[i] (y) to interfacesΓ[i]. It holds, cf. Figure1band Figure1c:

n[1] (y) = −n[j] (y), ∀y ∈ Γ[j]. (6)

An outer normal to the setΩUC, which is defined on the whole boundaryΓUC, is denoted as
nUC (y).

2.3 Strain approach to homogenization

In the sequel, thestrain controlledapproach to the computational homogenization is adopted,
see (Michel et al., 1999). Therefore, the PUC is subject to the loading by amacroscopicstrainE,
which, when combined with the governing equations of continuum mechanics, yields leads to
a distribution ofmicroscopicdisplacements, strains and stresses within the PUC. The average
value of the stress then yields the value of macroscopic stressΣ, defining thehomogenized
constitutive equation.

2.4 Boundary conditions

Following the standard procedure of the first-order homogenization, we assume the following
decomposition of the displacement field

u(i) (y) = uhom + u∗(i) (y), (7)

where (in the tensorial notation)uhom = E · y corresponds to an affine field due toE, whereas
the second part arises due to heterogeneity of the PUC. The corresponding strains can we written
in the form

ǫ
(i) (y) = E + ǫ

∗(i) (y), (8)

The macro-micro strain compatibility requires the validity of the following iden-
tity (Michel et al., 1999):

∮

ΓUC

u∗ (y)|ΓUC ⊗ nUC (y) dΓ = 0 (9)

1Therefore the valuesf [i] (y) may be considered as traces of a fieldf (i) (y) on the interfaceΓ[i], cf. (Rektorys,
2007).
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which corresponds to generalized kinematic boundary conditions posed on the fluctuating dis-
placement fieldu∗ (y).2

Next, we need to satisfy the energetic consistency condition in the form of the Hill lemma

ΣTE = 〈σ (y)T
ǫ (y)〉 (11)

m

〈σ (y)T
ǫ
∗ (y)〉 =

1

|ΩUC|

∮

ΓUC

p (y)T
u∗ (y)|ΓUC dΓ = 0, (12)

wherep (y) denotes surface tractions on the boundaryΓUC.
It can be shown that the strain and the energetic consistencyconditions can be satisfied

when adopting a convenient choice of the kinematic or the static boundary conditions. In our
case, the periodic kinematic and the anti-periodic static boundary conditions are employed to
that purpose. Then, for any vectorsy#1 andy#2 lying on two congruent boundaries, we have:

u∗
(

y#1
)

= u∗
(

y#2
)

∧ p
(

y#1
)

= −p
(

y#2
)

∧ nUC
(

y#1
)

= −nUC
(

y#2
)

. (13)

3 FETI-based solution of unit cell problem

For a numerical solution of the local problem of the homogenization, we use the FETI method
which is effective even in the case of the imperfect bonding of constituents. Following the
original treatment (Farhat and Roux, 1991), FETI is based on the modified Lagrange principle
where surface tractionsλ[j] (y) (defined on the interfacesΓ[j] with orientation identical to the
outer normaln[j] (y)) enforce the inter-domain displacement continuity. It follows from the
equilibrium equation on the interface that the surface tractions λ

[i] (y) has to verify relations
analogous to (6):

λ
[1] (y) = −λ

[j] (y), ∀y ∈ Γ[j]. (14)

3.1 Energy functional

The energy functionalΠ(û (y), λ̂
[1]

(y)) for homogeneous linear elastic constituents, which are
characterized by a phase-wise constant material stiffnessmatrixL(i), can be expressed as:

Π(û (y), λ̂
[1]

(y)) =
1

2

n
∑

i=1

∫

Ω(i)

ǫ̂
(i) (y)

T
L(i) (y)ǫ̂(i) (y) dΩ

+
n

∑

j=2

∫

Γ[j]

λ̂
[1]

(y)
T

(

û[j] (y) − û[1] (y)
)

dΓ, (15)

2The operationa (y) ⊗ b (y) appearing in Equation (9) is related to an outer product defined for two vectors
a (y) andb (y) as follows:

a (y) ⊗ b (y) :=
1

2

(

a (y)b (y)
T

+ b (y)aT (y)
)

. (10)
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where a function̂f (y) denote a test function corresponding to a functionf (y). The functional
Π is defined on a setDΠ:

DΠ =
{

u (y) = Ey + u∗ (y), ∀y ∈ ΩUC;

u∗ (y) = 0, ∀y ∈ ΓUC
D ; u∗ (y) periodic, ∀y ∈ ΓUC

}

×
{

0 ≤ λ
[1] (y)n[1] (y) ≤ λ[1]

n,max (y), ∀y ∈ Γ[1];

−λ
[1]
t,max (y) ≤ λ

[1] (y)t[1] (y) ≤ λ
[1]
t,max (y), ∀y ∈ Γ[1]

}

, (16)

whereλ
[i]
n,max (y) andλ

[i]
t,max (y) correspond to an initial normal and tangential strength ofi-th

interface, respectively andt[i] (y) denotes a tangent to the interfaceΓ[i] with clockwise orienta-
tion with respect to the normal vectorn[i] (y). Finally,ΓUC

D is a part of the boundaryΓUC (usually
the corners of a rectangular PUC), where the Dirichlet boundary conditions are imposed, since
the periodic boundary conditions prevent only the rigid body rotation of the PUC.

By splitting the microscopic fieldsǫ (y) andu (y) into the macroscopic and the fluctuating
constituents, and disregarding the constant terms appearing inΠ, we obtain a new functional

Θ(û∗ (y), λ̂
[1]

(y)) =
1

2

n
∑

i=1

∫

Ω(i)

2ETL(i) (y)ǫ̂∗(i) (y) + ǫ̂
∗(i) (y)

T
L(i) (y)ǫ̂∗(i) (y) dΩ

+
n

∑

j=2

∫

Γ[j]

λ̂
[1]

(y)
T

(

û∗[j] (y) − û∗[1] (y)
)

dΓ (17)

now defined on a set

DΘ =
{

u∗ (y) = 0, ∀y ∈ ΓUC
D ; u∗ (y) periodic, ∀y ∈ ΓUC

}

×
{

0 ≤ λ
[1] (y)n[1] (y) ≤ λ[1]

n,max (y), ∀y ∈ Γ[1];

−λ
[1]
t,max (y) ≤ λ

[1] (y)t[1] (y) ≤ λ
[1]
t,max (y), ∀y ∈ Γ[1]

}

. (18)

3.2 Approximation

Following the basic idea of the FETI-based discretization,we approximate the field of fluc-
tuating displacementsu∗ (y) independently on individual domainsΩ(i) with the aid of basis
functions organized into a matrixN(i)

u (y) and coefficients of the linear combination organized
into a vectord(i)

u :
u∗(i) (y) ≈ N(i)

u (y)d(i)
u , ∀y ∈ Ω(i). (19)

Consequently, the field of fluctuating strainsǫ
∗ (y) is related to the nodal displacements via the

geometric matrixB(i)
u (y):

ǫ
∗(i) (y) ≈ B(i)

u (y)d(i)
u , ∀y ∈ Ω(i). (20)

The approximation of the surface tractionsλ
[1] (y) is performed in the analogous way:

λ
[1] (y) ≈ N

[1]
λ (y)d

[1]
λ , ∀y ∈ Γ[1]. (21)
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Altogether, the approximate value of the functional receives the following form:

Θ̃(du,d
[1]
λ ) =

1

2

n
∑

i=1

∫

Ω(i)

(

2ETL(i)B(i)
u (y)d(i)

u + d(i)
u

T
B(i)

u (y)
T
L(i)B(i)

u (y)d(i)
u

)

dΩ

+
n

∑

j=2

∫

Γ[j]

d
[1]
λ

T
N

[1]
λ (y)

T (

N(j)
u (y)d(j)

u − N(1)
u (y)d(1)

u

)

dΓ. (22)

3.3 Minimization problem

Since the matricesB(i)
u (y)

T
L(i)B

(i)
u (y) are positive, the global minimum of the functioñΘ

coincides with the stationary point defined by optimality conditions

∂Θ̃

∂d
(i)
u

= 0 ⇔ K(i)d(i)
u = f (i) − E

(i)Td
[1]
λ , (23)

∂Θ̃

∂d
[1]
λ

= 0 ⇔
n

∑

i=1

E
(i)d(i)

u = 0. (24)

In the conditions (23–24), we have employed the following substitutions:

K(i) =

∫

Ω(i)

B(i)
u (y)

T
L(i)B(i)

u (y) dΩ, (25)

f (i) = −

∫

Ω(i)

ETL(i)B(i)
u (y) dΩ, (26)

E
(1) = −

n
∑

j=2

∫

Γ[j]

N
[1]
λ (y)

T
N(1)

u (y) dΓ, (27)

E
(j) =

∫

Γ[j]

N
[1]
λ (y)

T
N(j)

u (y) dΓ. (28)

Following the analogy with the Finite Element treatment of dynamics of structures,
e.g. (Bittnar andŠejnoha, 1996), the matricesE(i) defined by (27) and (28) will be calledcon-
sistent, while the Boolean matrices (sparse matrices containing only ones and zeros) are referred
to aslumpedones. The latter option is used in the actual implementation, which corresponds
to enforcing the displacement compatibility conditions atindividual nodes of the finite element
mesh.

3.4 Dual formulation

Now we proceed with expressing the coefficients of fluctuating displacementsd(i)
u from the

systems of equations (23) in the form

d(i)
u = K(i)†

(

f (i) − E
(i)Td

[1]
λ

)

+ R(i)d
(i)
R . (29)

The first termK(i)†
(

f (i) − E
(i)Td

[1]
λ

)

in relation (29) corresponds to the particular solution of

thei-th component of the system (23), which is expressed by the help of the generalized inverse
matrix K(i)† (seeGruber(2007) or Kruis (2006) for further discussion), replacing the inverse
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Domain of initial

λ
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λ
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Domain of completeDomain of contact

interface strength

problem decomposition

Figure 2: Graphical interpretation of constitutive law on interface.

matrix for singularK(i). The second termR(i)d
(i)
R appearing in Equation (29) corresponds to

a homogeneous solution of the system of thei-th component of the system (23), expressed as
the linear combination of rigid body motionsR(i) with coefficients of the linear combination
d

(i)
R . Next, we substitute the coefficients of fluctuating displacementsd(i)

u from relations (29) to
system (24) and add the solvability conditions (31) to account again for a possible singularity
of matricesK(i):

n
∑

i=1

E
(i)K(i)†

E
(i)Td

[1]
λ −

n
∑

i=1

E
(i)R(i)d

(i)
R =

n
∑

i=1

E
(i)K(i)†f (i) (30)

R(i)T
(

f (i) − E
(i)Td

[1]
λ

)

= 0 (31)

Elimination of the primary unknownsd(i)
u in (23–24) leads to a dual problem, formulated in

terms ofd[1]
λ andd

(i)
R . This problem can be efficiently solved using the Modified Conjugate Gra-

dient (MCG) method, augmented by the projection step to ensure the solvability condition (31),
see again (Kruis, 2006) or (Gruber, 2007) for further details.

3.5 Constitutive law on interface

As the final ingredient of the problem formulation, the particular form of the constitutive law is
shown in Figure2. In the framework of the proposed FETI-based algorithm, such a constitutive
assumption leads to the following conceptual implementation of the debonding problem:

INPUT 1: properties of individual constituents, initial conditions on interface
INPUT 2: normalλ[1]

n,max (y) and tangentialλ[1]
t,max (y) strength of interface

INPUT 3: final macroscopic load (macro-strainE)
INPUT 4: N = number of load steps
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(a) hexagonal microstructure

Ω(1)

Ω(2)

p = 0.5

(b) square microstructure

Figure 3: PUCs used in numerical experiments.

LOOP 1: for i = 1 to N
Apply macrostraini/N · E to a PUC
LOOP 2: repeat until the interfacial conditions are unchanged

MCG ⇒ evaluate actual values of normal and tangential surface tractions
SWITCH (in terms of actual values of surface tractions)

1. Domain of initial interface strength (Figure2)
⇒ surface tractions are unchanged

2. Domain of contact problem (Figure2)
⇒ surface tractions in tangential direction set to zero (irreversible)

3. Domain of complete decomposition (Figure2)
⇒ surface tractions in both direction set to zero (irreversible)

END SWITCH
END LOOP 2
computation of actual primal unknowns – evaluation of displacements inside the domains⇒ Σ

END LOOP 1

Note again that, due to the adopted lumped form of the “continuity” matricesE
(i), the con-

stitutive law is applied in discretized form, i.e. the valueof surface tractions is converted to
equivalent nodal forces.

4 Numerical examples

In this section we show results of selected numerical experiments obtained using an in-house
code implemented in MATLAB 7.1. All reported examples were executed on one of the PUCs
appearing in Figure3.

4.1 Controlled perfect debonding of constituents

In this experiment, we compare the macroscopic stressΣ computed using the FETI method
with the results available in (Šejnoha and Srinivas, 1998), corresponding to the hexagonal mi-
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Figure 4: Dependence on the overall response on the debonding angleα.

crostructure represented by a PUC shown in Figure3a. Both the plane stress and the plane strain
assumptions were used in the analysis to provide a comparison with a three-dimensional simu-
lations (̌Sejnoha and Srinivas, 1998). The PUC cell with 40% of fibers (p = 0.4) and material
data

E
(1)
y = 88 GPa

ν(1) = 0.299
and E

(2)
y = 200 GPa

ν(2) = 0.299
, (32)

were used. Note thatE(i)
y andν(i) denote the Young modulus and the Poisson ratio of thei-

phase, respectively. The PUC was loaded by three elementaryload cases

E = [1, 0, 0]T, E = [0, 1, 0]T, E = [0, 0, 1]T, (33)

and the corresponding macroscopic stressΣ was computed to arrive at the effective stiffness
matrix Lef . The resulting dependence of the effective stiffness matrix on the debonding angle
α appears in Figure4a. The dashed line and the dot-and-dashed line display the results com-
puted for the plane strain and the plane stress, respectively. The continuous line represents the
results from (̌Sejnoha and Srinivas, 1998) (i.e. the three-dimensional PUC). Note that all data
correspond to the casewithout contact conditions, i.e. the individual constituents can overlap
freely. Evidently, very good match between reference results and the FETI-base procedure has
been achieved. Moreover, it can be seen that the plane strainresponse provides an upper bound
to the three-dimensional response, while the plane stress conditions result in a lower bound.

To further illustrate the influence of the contact conditionbetween the individual con-
stituents, the PUC was loaded by the shear macroscopic strain

E = [0, 0, 0.2]T. (34)

The deformed shapes of the PUCs are compared in Figure5; Figure4b offers additional quan-
titative comparison between these two cases. The dashed andcontinuous lines in Figure4b
denote the results without and with activation of the contact, respectively. The FETI-based al-
gorithm correctly prevents the interpenetration of individual phases, see Figure4b, which leads
to a slightly more stiff shear response and to the appearanceof an additional normal stress when
compared with the former approach.
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(a) with penetration (b) without penetration

Figure 5: Overall deformation of PUC.

4.2 Load induced complete debonding of constituents

Finally, Figure6 plots the macroscopic stress-strain curves, determined for the composite shown
in Figure3b in the plane stress state, subject to the macroscopic deformation

E = [0.2, 0, 0]T. (35)

and the following material data are used in the simulation

Ey
(1) = 100 GPa

ν(1) = 0.4
and

Ey
(2) = 500 GPa

ν(2) = 0.2.
(36)

The continuous line and dotted lines, appearing in Figure6, display the normal macroscopic
stressΣ in the direction of the nonzero macroscopic deformationE and orthogonal direction
of the nonzero macroscopic deformationE , respectively. Recall that in Figure6, λ

[1]
n,max and

λ
[1]
t,max denote the normal and the tangential strength whole interface, respectively; the symbol

j stands for a unit of length. It can be seen that the proposed numerical method is able to cap-
ture the complex interaction between the debonding and the inter-phase contact; a mechanism
which is notoriously difficult to capture by existing analytical approaches of the continuum
micromechanics.

5 Conclusions

In the current work, a brief overview of a FETI-based procedure for the homogenization of
composite materials developed in (Gruber, 2007) has been presented. The most important con-
clusions can be summarized as follows:

• The proposed numerical scheme is very efficient in handling the problems, which are diffi-
cult to be treated by the displacement-based FEM approachessuch as the non-penetration
of individual phases and traction-based interfacial constitutive laws.

• The method is fully capable of capturing complex non-linearresponse typical of hetero-
geneous materials.
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Figure 6: Effective stress-strain diagrams. Initial interface strength inGN/j.

In the current state, the method is limited to specific, quitesimplistic, constitutive laws for
the interfacial region. Moreover, to fully assess the addedvalue of the duality-based approach,
more extensive comparison with the existing micro-mechanical methods should be performed.
These topics are currently under investigation and will be reported separately.
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Bittnar, Z. andŠejnoha, J. (1996).Numerical methods in structural mechanics. ASCE Press
and Thomas Telford, Ltd, New York and London.

Cox, B. and Yang, Q. (2006). In quest of virtual tests for structural composites.Science,
314(5802):1102–1107.

Dost́al, Z., Hoŕak, D., and Vlach, O. (2007). Feti-based algorithms for modelling of fibrous
composite materials with debonding.Mathematics and Computers in Simulation, 76(1-
3):57–64.

Farhat, C. and Roux, F.-X. (1991). A method of finite element tearing and interconnecting and
its parallel solution algorithm.International Journal for Numerical Methods in Engineering,
32(6):1205–1227.

267



Gruber, P. (2007). Homogenization of composite materials with imperfect bonding of con-
stituents. Master’s thesis, Czech Technical University, Prague. (in Czech),
http://mech.fsv.cvut.cz/ ˜ grubepav/download/gruber_master_thesis.pdf .

Kruis, J. (2006). Domain Decomposition Methods for Distributed Computing. Saxe-Coburg
Publications, Kippen, Stirling, Scotland, druh edition.

Kruis, J. and Bittnar, Z. (2008). Reinforcement-matrix interaction modeled by feti method. In
Domain Decomposition Methods in Science and Engineering XVII , pages 567–573. Springer
Verlag.

Li, S. and Ghosh, S. (2004). Debonding in composite microstructures with morphological
variations.International Journal of Computational Methods, 1(1):121–149.
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