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STRAIN-STRESS ANALYSIS OF THE PHOTOVOLTAIC POWER
PLANT CONSTRUCTION

V. Euis’, J. Venclik™, P. Zdimal™

Summary: The paper presents the results of the analysis of the optimization of
the photovoltaic power plant construction with regard to its weight (maximum
weight of the plant construction — without photovoltaic panels — must not exceed
50 t) while ensuring that the construction is safe against the plasticity of the
construction and the loss of buckling stability of steel rods.

1. Introduction

Photovoltaic power plants represent an alternative and environment friendly source of electric
power. Their contribution to the protection of climate and environment is not insignificant.
Conversion of solar energy to electricity is environmentally pure, as it does not product any
toxic waste, gas, fly ash or noise. One kilowatt of installed power capacity of photovoltaic
system saves approximately 850 kg of CO, emissions a year (http://www.fotovoltaicke-
elektrarny.cz/).

Photovoltaic (PV) power plant is designed to convert solar energy directly to electric
power via a photovoltaic process during which the contact between solar irradiation and the
surface of light-sensitive photovoltaic cell induces the emission of electrons. The obtained
direct current can be used to recharge accumulators, power electrical appliances or, when
converted to alternating current, supply public distribution network.

One square meter of the territory of the Czech Republic receives 950 - 1100 kWh of solar
energy on average (Fig. 1 - http://re.jrc.ec.europa.eu/pvgis/). For example, a total average
irradiance period in Prague is ca 1550 hours a year. Considering the efficiency of photovoltaic
panels and other necessary devices, 85 - 100 kWh of electric energy can be produced per 1 m*
and year. Photovoltaic panel with the area of Im® and rated output of 100 W can produce 100
kWh of electricity a year. Under the climatic conditions of the Czech Republic, conventional
fixed-mount system of 1kWp panel can produce ca IMWh a year. The efficiency of tracking
systems that actively follow the sun during the day is higher by 37%.
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Fig. 1: Distribution of incident solar energy in the Czech Republic

2. Problem situation

Besides its geographical location, the output of photovoltaic plant depends also on the area of
photovoltaic panels. Therefore, the presented power plant should use tracking system
(following the sun) and have two boards, each 36 m long and 10 m wide (Fig. 2). Operational
angle of the plant is defined by a angle ranging from 26° to 70° from the horizontal plane.

The photovoltaic panels are mounted to two lattice boards fixed in bearings of rotary
stands in order to provide horizontal axis rotation. The stands are mounted to a substructure
(Fig. 2a) ensuring vertical axis rotation of the whole construction. Combination of horizontal
and vertical rotation makes it possible to follow the sun and enhance the power plant output.

The aim of the analysis is to optimize the power plant construction with regard to its
weight (maximum weight of the plant construction — without photovoltaic panels — must not
exceed 50 t) while ensuring that the construction is safe against plasticity of the construction
and the loss of buckling stability of steel rods. The power plant construction can consist of
standardized profiles only that will be connected by welds or bolts. Therefore, conventional
optimization in FEM system ANSYS cannot be performed, as the dimensions of cross
sections of individual rods are not continuous, but discrete, and depend on the data defined by
applicable standards. The construction was optimized “manually”: In the places with high
safety against expected limit states, the dimensions of cross sections were reduced (or the
shape of cross sections was modified) and, conversely, in the places with low safety against
the limit states, the cross section dimensions were increased globally (i.e. the whole rod was
scaled up) or locally (additional profile was added to a given part of the rod).
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Fig. 2b: Design of the construction with PV panels

3. Computational modeling input data

Geometry of the analyzed system is demonstrated in Fig. 2. The whole construction is loaded
by its own weight, the weight of photovoltaic panels including mounting construction
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(15 kg/m?) and the force load that models the action of wind (according to the manufacturer,
maximum load of panels exerted by the wind is 130 km/h, i.e. 815 Pa). As soon as the wind
speed exceeds the maximum speed limit, the construction will be reclined to the horizontal
position (a = 0° - Fig. 3a).

The connections with the basic body are located in the wheels ensuring vertical axis
rotation and in the vertical axis. Modeling was based on the symmetry of the construction, as
we modeled the load exerted by the wind that does not act the construction obliquely (Fig. 4).
Four variants with different inclination of panels (angle o - Fig. 3) were used during
modeling. For each variant, wind blowing from the front (in the direction of incident sunlight,
Fig. 3¢) or from behind (Fig. 3d) was taken into account.

The construction is made of structural steel which is considered as a linear and elastic
material (E =2.1 10° MPa, p=0.3, p = 7850 kg.m™).
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o = 48° o =70°
Q) d)
vier 130km/h =szadu, =klen panslu 48 stupnu vier 130km/h maprsdu, sklen panslu 70 stupnu

Fig. 3: States of the construction load

4. Results of computational modeling

As the power plant construction is designed to allow rotation of panels around the horizontal
axis, the intensity of the load exerted by the wind depends on the effective area of the panel
(i.e. angle o). Therefore, four variants were analyzed as illustrated in Fig. 3.

241



wind from the front
—
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Coefficient of the safety against limit state of elasticity is evaluated based on isosurfaces
of equivalent stresses according the HMH theory of plasticity in MPa. The overall strain of
the whole construction (total shift of each node [mm]) corresponding to such load are for each
load state demonstrated in Figs. 5 — 9. As far as the strain of the system is concerned,
combination of deflection of boards and bending of stands is the crucial factor.

Tab. 1: Results of computational modeling — stress and strain

Load state Maximum equivalent | Maximum total shift The result is
identification stress according to of the construction demonstrated in
HMH [MPa] [mm] Fig. no.
a=0° 86.8 523 5
o = 26° — wind from 96 62 6
the front
o= 26° —wind from 84.6 34 7
behind
o= 48° —wind from 150 08
the front
o = 48° —wind from 107 85.6
behind
o = 70° — wind from 193.5 141.8 8
the front
o = 70° — wind from 187.4 185.3 9

behind
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Maximum equivalent stress increases with growing angle a. It has been found that when
the wind blows from the front (i.e. in the direction from the sun), maximum equivalent
stresses are higher as compared with the load exerted by the wind blowing from behind.

Overall summary of maximum values for individual load states are demonstrated in Tab. 1 or
Fig. 10.

The value of collapsing load associated with the loss of stability was determined by linear
problem-solving method. Based on linear elastic model, the method estimates theoretical
collapsing load at which the stability is lost. The results of the computation are eigenvalues —
factors of resistance against the loss of stability — that express the relation between collapsing
load and the entered computational load. The analysis indicates that the coefficient of safety
against limit state of buckling stability (LSBS) (for a given wind direction) decreases with
increasing angle a (see Fig. 13) — similarly to the control of limit state of elasticity. The loss
of stability for the construction inclined at a = 70 ° is demonstrated in Fig. 10 and Fig. 11.
Summarized results are stated in Tab. 2.

Tab 2: Results of computational modeling — safety against buckling

Load state Eigenvalue representing the safety The result is demonstrated
identification against buckling (LSBS) [-] in Fig. no.
o=0° 4.73
o =26° — wind from 3.01
the front
o = 26° —wind from 6.84
behind
o = 48° —wind from 2.01
the front
o = 48° —wind from 2.51
behind
o = 70° — wind from 1.62 11
the front
o = 70° — wind from 1.50
behind
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Fig. 5: Equivalent stress HMH and total deformation of the system for a. = 0°
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Fig. 6: Equivalent stress HMH and total deformation of the system for a = 26°,
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Fig. 7: Equivalent stress HMH and total deformation of the system for oo = 26°,
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Fig. 8: Equivalent stress HMH and total deformation of the system for a = 70°,
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Fig. 9: Equivalent stress HMH and total deformation of the system for a. = 70°,
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Fig. 10: Influence of the maximun equivalents stress and buckling safety on the angle o
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5. Conclusion

The aim of this study was to design and control the photovoltaic power plant. Total weight of
profiles used to build the designed construction was 50 t.

Considering the evaluated limit states (limit state of elasticity and limit state of buckling
stability of rods), the most adverse inclination of the lattice board equipped with panels is
a = 70° which is the maximum vertical inclination of the board. As computational modeling
worked only with static action of wind, which does not correspond with reality, the panels
must be reclined to horizontal position as soon as wind speed reaches 75 km/h (computational
wind speed was 130 km/h).
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