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GEOMETRY OF FINITE DEFORMATIONS, LINEARIZATION,
AND INCREMENTAL DEFORMATIONS UNDER

INITIAL STRESS / STRAIN

Z. Fiala 1

Summary: Stepwise integration of a finitely deformed body is based on an incre-
mental kinematics of a medium under initial stress / strain conditions. As usual in
continuum mechanics, deformation and stress tensors at a point are considered to
form vector (i.e. Euclidean) spaces. The derivatives therefore are the usual ones,
and when dealing with time evolution we have to resort to objective time deriva-
tives. There are two classical textbooks dealing with the incremental approach –
the book of Green & Zerna and the book of Biot, both approaching the subject from
different perspectives. The first as an incremental strain, the second one as an incre-
mental stress. Employing an approach of differential geometry to the description of
finite deformations, resulting in a geometrically consistent linearization, we can
simply compare these two descriptions. The contribution reviews the theory of fi-
nite deformations both from the finite-dimensional Riemannian geometry viewpoint
(standard knowledge) and the infinite-dimensional Riemannian geometry viewpoint
(non-standard, disputable approach), considering the space of deformation tensors
as a constantly non-negatively curved space.

1. Introduction

The focus of this presentation is an application of differential geometry to the description of
finite deformations in continuum mechanics. The Riemannian geometry naturally enters the
theory via deformation tensor fields. In fact, if we denote by g a Riemannian metric on actual
configuration S = Φ(B) ⊂ E3, i.e. sufficiently smooth symmetric positive-definite covariant
tensor field of second order, which assigns to each point x ∈ S a metric tensor that determines
a scalar product of any two vectors emanating from this point – and so a geometry in its vicinity,
then the covariant form C[ of the well-known second order right Cauchy-Green mixed defor-
mation tensor C = FTF can be shown to be an image of g in B. Thus the right Cauchy-Green
deformation tensor is again the Riemannian metric – but now on referential configuration B,
and describes the geometry of the deformed body S from the point of view of an observer atta-
ched to the undeformed body B. Similar interpretation also applies to the left Cauchy-Green
b = FFT, the Piola B = F−1F−T, and the Almansi c = F−TF−1 deformation tensor fields.
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Moreover, differential geometry enables us to employ its tools for analysis of deformation pro-
cess. For example, the rate-of-deformation tensor d can be expressed both in terms of the Lie
derivative 2d[ = Lvtg, and in terms of the covariant derivative 2d = ∇vt + (∇vt)T.

In addition, we can move one step further and think of the finite deformation process as
a trajectory C[ : I → M in the space M = Met(B) of all Riemannian metrics on reference
configuration B. The image of the rate-of-deformation tensor d[ in referential configuration can
be shown to be the time derivative ∂C[

t, i.e. a vector to the curve C[
t. Then all vectors emanating

from a point C[ form a vector space TC[M, and we prove that the deformation process within
small deformations may be represented by a trajectory in this vector space. Introducing the
scalar product on TC[M via d[ – ∂C[

t correspondence further edowsM with the Riemannian
structure, making it possible to introduce a covariant derivative, find a geometrical interpretation
of the logarithmic strain and generalized it for strained initial configurations, as shown in Fiala
(2007) based on Rougée (1997).

The central problem in finite deformations is the stress rate and the corresponding stress
update algorithms in solving the finite deformation problems by incremental method. Within
framework ofM the stress field can be shown to be a covector (covariant vector), and evolving
stress field during deformation process a covector field along the trajectory C[

t. The covariant
derivative is then the only tool capable of introducing the time derivative, in this case via geo-
metrically consistent linearization. Incidentally, it proves to be the Zaremba-Jaumann objective
time derivative just like in Biot (1965).

The spaceM, as the space of metric tensors, corresponds to the space of symmetric posi-
tive definite matrices. Regarding this space as the Riemannian manifold (in fact constantly
non-negatively curved space (see Bhatia (2007)), rather then a vector space, enables us to find
geometrical interpretation of the logarithmic strain as a vector, and generalized it for strained
initial configurations. Moreover, straight lines here prove to be matrix exponentials, and so
instead of adding an increment to an initial deformation, it should be actually mapped to M
by means of the matrix exponential, starting from an initial deformation. In the end, these
conclusions will be compared with the approach of Green & Zerna and Biot.

2. Geometry of finite deformations

Our exposition of application of differential geometry to the theory of finite deformations draws
on the book of Marsden & Hughes (1993) and papers of Sansour (1992), Svendsen & Tsakmakis
(1994), Svendsen (1995), Giessen & Kollmann (1996), Stumpf & Hoppe (1997) and Kadianakis
(1999). Now, let a body B occupy a connected region of the three-dimensional Euclidean
space E3, from now on considered as the Riemannian manifold E3 (see Appendix for more
information and further references). The region is assumed open and bounded, with smooth
boundary. Simultaneously, the body B will represent a reference configuration, made up of
points labelled by capital letters X . Points in ambient space – the Riemannian manifold E3,
will be labelled by small letters x. Symbol S = Φ(B) will denote an actual configuration.

First we will hightlight a fundamental difference between small – in fact infinitesimal, and
finite deformations. The theory of small deformations approximates a deformation of a body
in terms of infinitesimal displacement fields over an initial configuration of the body, whereas
the theory of finite deformations describes it exactly in terms of differentiable invertible trans-
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formations – diffeomorphisms that transform the initial configuration into another, actual one.
To be more illustrative, let us consider two successive deformations X → x1 → x2 and split
them into the identity mapping plus a displacement field x ≡ Φ(X) = X + u(X) to obtain
x2 = Φ2 ◦ Φ1(X) = Φ2(x1) = Φ2(X + u1(X)) = X + u1(X) + u2(X + u1(X)). In the
case of small deformations one neglects all the terms of second order in magnitude, and so the
relation takes form x2 ≈ X + u1(X) + u2(X), i.e. the diffeomorphism Φ is replaced by the
displacement field u, as a correction to the identity mapping x = ΦId(X) ≈ X , and the concept
of diffeomorphisms transforms into that of fields.

2.1. Deformation tensor fields

A deformation of a body, globally described in terms of an injective differentaible mapping
(diffeomorphism) Φ : B → E3, can be locally characterized by a deformation tensor fields –
most frequently by the field of the right Cauchy-Green deformation tensors C = FTF, but
also by deformation fields of left Cauchy-Green b = FFT, Piola B = F−1F−T, or Almansi
c = F−TF−1 tensors. We now show that these deformation fields are actualy Riemannian
metrics.

Let us denote by g a Riemannian metric on E3, i.e. sufficiently smooth symmetric positive-
definite covariant tensor field of second order, whose value at each point x ∈ E3 is a tensor that
determines a scalar product of any two vectors emanating from this point, and so establishes
a geometry in its vicinity. By G we fix a metric on reference configuration. If we apply a speci-
fication for the transposed deformation gradient FT = G−1F∗g by (87), then for the mixed
RIGHT CAUCHY-GREEN deformation tensor field we obtain

C = FTF = G−1F∗g F = G−1 Φ∗(g), (1)

where Φ∗(g) denotes a transformation (pull-back) of metric g from actual to referential con-
figuration (see (92), now F = TΦ). Since C[ = GC by (84), we can transcript (1) into
more simple, covariant form C[ = Φ∗(g), i.e. C[ = Φ∗(g) if we leave specific representation
of Remark-2 (2-tensors are in general labeled in italic, their specific representation as linear
mappings in bold). The covariant form of the right Cauchy-Green deformation tensor field
C[= Φ∗(g) is thus a Riemannian metric on B, and because of

C[(U, V ) ≡ 〈C[U, V 〉TXB ≡ G(CU, V ) = g(u, v) ≡ 〈gu, v〉TxS , (2)

it describes the geometry of the deformed body from the point of view of an observer attached
to the undeformed body. For more about the scalar product of vectors (2), see relations (79)
and (80) from Appendix. Here, vectors before deformation U, V ∈ TXB turning into u, v∈ TxS
after deformation are interrelated by u = Φ∗(U) ≡ FU ◦Φ−1 and v = Φ∗(V ) ≡ FV ◦Φ−1 (89).

Similarly, for the field of mixed PIOLA deformation tensor field we have

B = F−1F−T = F−1g−1F−∗G = Φ∗(g−1)G , (3)

where again Φ∗(g−1) stands for the pull-back of metric g] from actual to referential config-
uration – now metric in dual space of covectors, (see (92); moreover, in this representation
g] ≡ g−1). Since B] = BG−1 by (84), relation (3) can be put into contravariant form
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B] = Φ∗(g−1), i.e. B] = Φ∗(g]). Again we can express the scalar product of two covec-
tors (see 81) in referential configuration in terms of Piola tensor – here covectors before de-
formation A,D ∈ T ∗XB turning into a, d ∈ T ∗xS after deformation, and so interrelated by
a = Φ∗(A) = F−∗A ◦ Φ−1 and d = Φ∗(D) = F−∗D ◦ Φ−1 (see (90)), to obtain

B](A,D) ≡ 〈A,B]D〉TXB ≡ G](B∗A,D) = g](a, d) ≡ 〈a,g]d〉TxS , (4)

where B∗= GBG−1. The Piola deformation field B] = Φ∗(g]) thus describes the geometry of
the deformed body from the viewpoint of an observer attached to the reference configuration,
now in terms of covectors.

We can also proceed reversely and be interested in the geometry of the body B from the view-
point of an observer in actual configuration S. Now we obtain, making use of push-forward
transformation Φ∗ (see (93)), the LEFT CAUCHY-GREEN deformation tensor field b] = Φ∗(G

])

b = FFT = FG−1F∗g = Φ∗(G
])g , (5)

or the ALMANSI deformation tensor field c[ = Φ∗(G)

c = F−TF−1 = g−1F−∗GF−1 = g−1Φ∗(G) . (6)

Expressions for corresponding scalar products in reference configuration, being expressed in
actual configuration, are analogous to previous ones (3) and (6). Namely,

b ](a, d) ≡ 〈a,b ]d〉TxS ≡ g ](b∗a, d) = G ](A,D) ≡ 〈A,G ]D〉TXB and (7)

c [(u, v) ≡ 〈c[u, v〉TxS ≡ g(cu, v) = G(U, V ) ≡ 〈GU, V 〉TXB . (8)

From (7) and (8) we conclude that both b ] and c [ describe geometry of the undeformed body
from the viewpoint of an observer attached to the actual configuration. Again b∗= g b g−1.

2.2. Strains and Logarithmic strains

Since both C[ and G belong to the same tensor space, we can subtract G from C[ to find
a relative deformation (i.e. strain) – the GREEN-ST.VENANT strain tensor E[ = 1

2
(C[ − G),

resp. E = 1
2
(C− I). Similarly, we arrive at another Lagrangian strain tensor – the PIOLA strain

tensor H] = 1
2
(B] − G]), resp. H = 1

2
(B − I). As for Eulerian strain tensors, we have the

FINGER strain tensor h] = 1
2
(g] − b]), resp. h = 1

2
(i− b), and the ALMANSI-HAMMEL strain

tensor e[ = 1
2
(g − c[), resp. e = 1

2
(i− c).

There exist another Lagrangian and Eulerian strain tensors – the logarithmic strain tensors
introduced by Hill (see for example Xiao et al. (1997)). As we shall see later, they consti-
tute more convenient strain measures, since they properly reflect the specific geometry of the
underlying space. If the deformation gradient F is expressed through polar decomposition
F = RU = VR, then C = U2, B = U−2, b = V2, c = V−2, and the logarithmic strains are
defined as follow

L = log U = 1
2

log C (9)
l = log V = 1

2
log b , (10)
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where for symmetric matrix X =
∑3

iλiNi ⊗Ni its matrix logarithm is defined as

log X = lim
n→0

1

n
(Xn− I) =

3∑
i

log(λi)Ni ⊗Ni . (11)

Since U is symmetric positive-definite mixed 2-tensor field over B, and V symmetric positive-
definite mixed 2-tensor field over S (F and R are two-point tensor fields) it holds both

Un = Φ∗(Vn) ≡ F−1 VnF (= R−1 VnR) (12)
Vn = Φ∗(U

n) ≡ FUnF−1 (= RUnR−1) , (13)

and

L = Φ∗(l) ≡ F−1lF (14)
l = Φ∗(L) ≡ FLF−1. (15)

Later we will find geometric interpretation and corresponding generalization of these strain
tensors.

2.3. Time-dependent deformation

Let us now consider a deformation process, i.e. a time-parameterized smooth sequence of
diffeomorphisms Φt : B → E3, for time t ≥ t0. If we denote Ψt, s ≡ Φt ◦ Φ−1

s : E3 → E3, then

Ψt,s = Ψt,r ◦Ψr,s (16)
Ψr,r = identity

and
d

dt
Ψt,s=vt ◦Ψt,s , (17)

where vt(x) = Vt ◦ Φ−1
t (x) represents the Euler velocity defined by means of the Lagrange

velocity Vt

Vt(X) : =
∂Φt(X)

∂t

∣∣∣∣
X

. (18)

Collection Ψt,s is called the flow of vt (see Marsden & Hughes (1993), p 95), where the Euler
velocity vt is a vector field over the actual configuration S, and its corresponding vector field
over the body B is called the convective velocity field vt = Φ∗t (vt). Diagram below highlights
mutual relations among these three vector fields.

TB TΦt // TS

B
Φt

//

vt

OO
Vt

77oooooooooooooo S

vt

OO

Linearization of the expression (17) results in time rate of the tangent mapping TΨt,s (see
Marsden & Hughes (1993), p 95)

d

dt
TΨt,s= ∇̂vt ◦ TΨt,s ( or Ḟ = LF ) , (19)
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where the velocity gradient ∇̂vt represents a linearized Euler vector field vt . Expressed in
components by means of covariant derivative ∇̂ associated with metric g on E3, it reads

∇̂vt = (vt)
i|j ∂xi ⊗ dxj. (20)

From (19) for a general time-dependent tensor field θt over E3 one obtains (see Marsden &
Hughes (1993), p 95) (

d

dt
Ψ∗t, s

)
(θt) = Ψ∗t,s

(
∂

∂t
θt + Lvtθt

)
, (21)

and so (
∂

∂t
+ Lvt

)
(θt) =

(
Ψt,s ∗ ◦

d

dt
◦Ψ∗t,s

)
(θt) , (22)

where symbol Lvt stands for the LIE DERIVATIVE with respect to a vector field vt . Since we
consider time-dependent tensor fields θt, the Lie derivative is modified by partial time derivative
∂t to obtain (see Frankel (1997), Abraham et al. (1988) and Schutz (1999))

Lvt: =
∂

∂t
+ Lvt . (23)

This time derivative based on Lie derivative expresses the rate of change of time-dependent
tensor fields at individual points of a body, as seen by an observer in actual configuration, as
a consequence of moving coordinate system. The time derivative itself is a result of comparison
of time dependent values of the tensor field always in one tensor space – the tensor space
corresponding to a particular point of the body X ∈ B, which is a simple task due to linear
nature of the tensor space.

If on the other hand we try to calculate the Euler acceleration at still staying in the ambient
space E3 we have to compare values of the vector field vt , not only in different moments of
time but also in different tangent spaces attached to different points of E3 through which the
point X of the body passes. In order to do this, we have to resort to covariant derivative. In fact,
the Euler acceleration at(x) = At ◦ Φ−1

t (x) is a vector field over actual configuration S, again
defined in terms of the Lagrange acceleration

At(X) : =
∂Vt(X)

∂t

∣∣∣∣
X

, (24)

and its corresponding field over the body B forms the convective acceleration a t= Φ∗t (at). For
all these three vector fields a similar diagram as for velocities applies. If we express the Euler
acceleration directly in terms of available tools of the space E3, we obtain relation (see Marsden
& Hughes (1993))

at =

(
∂

∂t
+ ∇̂ċ

)
vt , (25)

where c(t) = Φt(X) represents the trajectory of a given point X in space E3, ċ = vt is
its velocity, and ∇̂ċ θ stands for the covariant derivative of any tensor field θ in E3 along the
trajectory c(t).

By definition, the covariant derivative expresses the rate of change of tensor quantity θ(x)
at a point x = c(t), when passing through it in a direction and velocity given by its tangent
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vector vt(x) = ċ(t). Geometrically, the covariant derivative is closely related to the parallel
translation of tensors along curves. During calculation one compares values of a tensor field
from different tensor spaces corresponding to different points of the space E3. Namely, a tensor
θc(t) at a point c(t) have to be parallelly translated θ←c(t) to the initial tensor space at the point c(0)

along the curve c(t), in limit characterized by vector ċ , where we can subtract them to compute
the corresponding covariant derivative (for example Dodson & Poston (1997))

∇̂ċ θ = lim
t→0

θ←c(t) − θc(0)

t
. (26)

Since E3 is Euclidean space, parallel translation is independ of the selected path. If the mani-
fold is curved, as is the case in our spaceM, selection of curve matters. In the case of time-
dependent tensor fields, the covariant derivative should be again modified by partial time deriva-
tive as in (23).

In this way we obtain one more time derivative – the time derivative based on covariant
derivative, which establishes the rate of change of time-dependent tensor fields θt along trajec-
tory c(t) when going through its points in the direction and velocity given by its tangent vector
vt = ċ(t). Contrary to the time derivative based on Lie derivative, which is related to time
changes of tensor fields in the body itself, even though interpreted from the viewpoint of actual
configuration, the time derivative based on covariant derivative is related not only to time, but
also to space variations of tensor fields when moving through the space E3.

For function f , its time derivative based on Lie derivative is(
∂

∂t
+ Lvt

)
f =

∂f

∂t
+ vit

∂f

∂xi
, (27)

i.e. it is the material time derivative, just like the time derivative based on covariant derivative
for vector field u in Cartesian coordinates[(

∂

∂t
+ ∇̂vt

)
u

]j
=
∂uj

∂t
+ vit

∂uj

∂xi
. (28)

For other types of tensors, these derivatives look different.

2.4. Rate of deformation tensors

While the time derivative based on covariant derivative of the metric tensor g, resp g] equals to
zero (g is not only stationary, but it is a covariant constant ∇̂g = 0), and so(

∂

∂t
+ ∇̂vt

)
g = 0 , (29)

from the viewpoint of mechanics of continua its time derivative based on Lie derivative has
clear mechanical meaning. In fact, it holds (see Frankel (1997), Marsden & Hughes (1993))(

∂

∂t
+ Lvt

)
g = Lvt g = 2

[
(∇̂vt)[

]
sym

= 2d[(vt) , (30)
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where
(∇̂vt)[ = (vt)i|j dxi ⊗ dxj (31)

and at the same time(
∂

∂t
+ Lvt

)
g] = Lvt g

] = 2
[
(∇̂vt)]

]
sym

= −2d](vt) , (32)

where now
(∇̂vt)] = (vt)

i|j ∂xi ⊗ ∂xj. (33)

Since
∂C[ : =

∂

∂t
C[ = 2Φ∗t (d

[) and (34)

∂B] : =
∂

∂t
B] = −2Φ∗t (d

]), (35)

an observer attached to the body B then interprets the rate-of-deformation tensor field 2d[,
resp. −2d], as the deformation rate ∂C[, resp. ∂B], and (cf. (2), (4))

d

dt
g(u, v) = 2d[(u, v) = ∂C[(U, V ) and (36)

d

dt
g](a, d) = −2d](a, d) = ∂B](A,D) . (37)

If we denote byD = Φ∗t (d), with 2d = ∇̂vt+(∇̂vt)T, then for its representation D by Remark-2

D : = Φ∗(d) = Φ∗(g]d[) = F−1g]F−∗F∗d[F = B] 1

2
∂C[ =

1

2
B ∂C (38)

= Φ∗(d]g) = F−1d]F−∗F∗gF = −1

2
∂B] C[ = −1

2
∂B C , (39)

where ∂C = ∂(FTF) and ∂B = ∂(F−1F−T).

Now a vector field vt, for which d[(vt) = 1
2
Lvt g = 0, is called the Killing vector field. The

most general form of time-dependent mappings Φt : E3 → E3 corresponding to Killing vector
fields in E3 are isometries, i.e. time-dependent Euclidean transformations in E3 preserving
distances within the body (see Marsden & Hughes (1993), p 99). That is to say, they represent
a moving body in E3 without deformation.

Since the Cauchy-Green tensor field C[ represents the convected (Riemannian) metric on the
body B (in fact, the space B with C[ = Φ∗(g) is isometric to the space S = Φ(B) with g, via
the mapping Φ), it applies (see Simo et al. (1988))

∂C[ = Lvt C
[ = 2

[
(∇̃vt)

[
]
sym

(40)

∂B] = Lvt B
] = 2

[
(∇̃vt)

]
]
sym

, (41)

where now ∇̃ = Φ∗t (∇̂) denotes the covariant derivative associated with convective metric field
C[ in B, and Lvt = Φ∗t (Lvt). At the same time we have

a t =

(
∂

∂t
+ ∇̃vt

)
vt (42)

for convective acceleration field a t .
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2.5. Dual stress and strain tensors, corresponding time derivatives

The various stress and strain tensors, and their objective time derivatives can be related to each
other (Hill (1968), Haupt and Tsakmakis (1989)) via the stress power density:

πt(x) ≡ 〈σ]t , d[t〉T ∗xS = 〈σ[t , d
]
t〉TxS = σt : dt (43)

where σt is the mixed CAUCHY stress tensor, and dt is the mixed rate-of-deformation tensor.

Hill’s result is obtained by pulling-back the spatial picture to the referential configuration, so
that the referential stress power density can be written:

πreft (X) = J(πt ◦ Φ)(X) =

{
〈P ]

t , ∂E
[
t 〉T ∗XB

〈K[
t , ∂H

]
t 〉TXB

}
=

{
Pt : ∂tEt
Kt : ∂tHt

(44)

Above, the following two relations were employed (see (34) and (35))

Φ∗(d[) = ∂E[ = 1
2
∂C[ Φ∗(d]) = −∂H] = −1

2
∂B]

Now, P ] = Φ∗(τ ]) is the SECOND PIOLA-KIRCHHOFF stress and K[ = −Φ∗(τ [) the NEGA-
TIVE CONVECTED stress, where the mixed WEIGHTED CAUCHY (or KIRCHHOFF) stress tensor
τ = Jσ. The Jacobian J (being scalar) is then the determinant of the tangent mapping trans-
formation J = det(∂Φ/∂X)

√
det(g)/ det(G), where G and g denotes the metric on B and S,

respectively (i.e. the scalar product on TXB and TxS, respectively).

SinceE[= Φ∗(e[) and e[= Φ∗(E
[),H]= Φ∗(h]) and h]= Φ∗(H

]), then by pushing-forward
the Hill’s result back to spatial configuration Haupt and Tsakmakis obtained:

πreft (X(x)) =

{
〈τ ]t ,Lvte

[
t〉T ∗xS

〈−τ [t ,Lvth
]
t〉TxS

(Lvte
[)ij = ėij + (d− w)li elj + eik (d+ w)kj

(Lvth
])ij = ḣij − (d+ w)il h

lj − hik (d− w)kj
(45)

Lvt = Φ∗ ◦ ∂ ◦ Φ∗ is the Lie derivative, and w is the vorticity. This time derivative (known
in mechanical literature as the OLDROYD time derivative), obtained from material derivative
exactly the same way as the corresponding dual stress and strain tensors, is naturally objective.

T-B : C[= Φ∗(g) the RIGHT CAUCHY-GREEN deformation tensor
E[= 1

2
(C[−G) the GREEN-ST.VENANT strain tensor

P ]= Φ∗(τ ]) the SECOND PIOLA-KIRCHHOFF stress tensor

T-S : c[ = Φ∗(G) the ALMANSI deformation tensor
e[ = 1

2
(g − c[) the ALMANSI-HAMEL strain tensor

τ ] the (contravariant) WEIGHTED CAUCHY stress tensor

C-B : B]= Φ∗(g]) the PIOLA deformation tensor
H]= 1

2
(B]−G]) the PIOLA strain tensor

K[= −Φ∗(τ [) the NEGATIVE CONVECTED stress tensor

C-S : b] = Φ∗(G
]) the LEFT CAUCHY-GREEN deformation tensor

h] = 1
2
(g]− b]) the FINGER strain tensor

−τ [ the (covariant) WEIGHTED CAUCHY stress tensor

Above, T stands for tangent, C for cotangent spaces. The corresponding time derivative in B is
∂t, in S the Lie derivative Lvt .
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2.6. Summary

In order to emphasize the actual mechanical content of this overview let us conclude by the sum-
mary: (0) Instead of mixed deformation tensor fields, it is geometrically more natural to think of
their covariant, or possibly also contravariant, form. (1) Deformation of a body is completely
characterized by a Riemannian metric – from referential configuration point of view by the
covariant field of right Cauchy-Green deformation tensors C[, from actual configuration view-
point by the covariant Almansi deformation tensor field c[. (2) The contravariant field of Piola
deformation tensors B] or the contravariant field of left Cauchy-Green deformation tensors b]

express exactly the same geometry but in rather less illustrative representation. (3) A defor-
mation process can be represented by a trajectory C[ : I → M in the space M = Met(B)
of all Riemannian metrics on the reference configuration B. Within the space M, a Rieman-
nian metric C[

t at a time t is a point. Time derivative ∂C[
t here is a vector, which corresponds

to the covariant rate-of-deformation field d[t in actual configuration, via pull-back and push-
forward transformations. (4) The strain and stress tensors form the so-called dual pairs with
the corresponding time derivative. (5) In the next section, we prove moreover that the second
Piola-Kirchhoff stress field is a covector.

3. Geometry of the spaceM and the deformation process

We have concluded the preceding section by the summary, which provides us with the starting
point for our next analysis of the deformation process:

STARTING POINT: From the viewpoint of finite deformations, a deformation process can be
represented by a trajectory C[: I →M in the spaceM = Met(B) of all Riemannian metrics
on the reference configuration B. If the initial configuration is unstrained, with an initial condi-
tion C[

0 = G. Tanget vectors ∂C[
t correspond, via pull-back and push-forward transformations,

to the covariant rate-of-deformation field d[t in actual configuration.

From the mathematical point of view, the spaceM forms an infinite-dimensional manifold.
In this section we show that it may be given a Riemannian metric, i.e. a geometry, to become the
Riemannian infinite-dimensional manifold of Riemannian metrics. Moreover, its geometry fac-
torises into identical geometry of individual spacesMX , made up of all metric tensors at a point
X ∈ B – that isMX = Sym+(n) the space of symmetric positive-definite matrices Sym+(n).
Considering Sym+(n) as the Riemannian manifold rather than a vector space enables us to
analyse in a geometrically consistent way a deformation process by means of geometrical tools
of the Riemannian geometry. This approach to mechanics of continua was initiated by Rougée
(1997), and further modified by Fiala (2004), (2007), where details of following propositions
can be found

First we show that a deformation process within small deformations is formed by a trajectory
in a linear vector space – the tangent space TC[M to the manifoldM at a pointC[, representing
the initial deformation state of the body.

PROPOSITION 1: Within small deformations, a deformation process superposed on the initaily
strained body, and chracterized by a deformation field C[

0, is represented by a trajectory in a li-
near vector space – the tangent space TC[

0
M to the manifold M at the point C[

0.

10



Proof. Let now Ψ : I × Φ0(B) → E3 be a deformation process starting from the deformed
state Φ0(B), characterized by the right Cauchy-Green deformation field C[

0 = Φ∗0(G0), where
G0 is actual metric field in the intermediate configuration Φ0(B), occupied by body B after
deformation Φ0. From the time-dependent diffeomorphism Ψt one obtains the deformation rate
field ∂C[

t = 2 (Φ∗0 ◦Ψ∗t ) (d[) and the Euler velocity field vt = ∂(Ψt ◦ Φ0) (X)|X , all related
together via (see (30), (34))

Φ0∗(∂C
[
t ) = 2Ψ∗t

(
d[(vt)

)
= Ψ∗t (Lvt g) = 2Ψ∗t

(
(∇̂v[t)sym

)
. (46)

Since for the tensor field of small deformation: e(ut)
i
j = [(∇̂ut)sym]ij = 1

2
(uit|j + ut j|i), we

get d(vt) = ∂e(ut), where vt = ∂ut. Now, since for small deformations a diffeomorphism
Ψt acts as the identity mapping, i.e. x = ΨId(Φ0(X)) ≈ Φ0(X) = X0, the deformation
gradient TΨt ≡ I + Tut ≈ I . For transformations of vectors and covectors we thus obtain
v = TΨt(V0) ≈ V0 andA0 = TΨ∗t (a) ≈ a, which means that the concept of small deformations
identifies tensor spaces in intermediate and actual configurations. In particular, the metric tensor
fields are equal g ≈ G0, (besides, the Lie derivative is replaced by the simple time derivative
Lvt = Φ∗ ◦ ∂ ◦ Φ∗ ≈ ∂.) Now, an infinitesimal variation u(X0) around the identity mapping
ΨId(X0) = x ≈ X0 at a point x = Ψt(X0) (i.e. linearization of the mapping Ψt in other words)
enters the theory of small deformations via a variation of the metric Ψ∗t (Lvt g) ≈ Lv g = 2e[(v).
Then from the relation Φ0∗(∂C

[
t ) = 2Ψ∗t

(
d[
)

for an increment within small deformation one
obtains Φ0∗(∂C

[
t ) ≈ 2d[(v), i.e. ∂C[

t ≈ 2Φ∗0(e[(v)), and the proposition follows.

PROPOSITION 2: One can naturally introduce a Riemannian metric on MX to become a ma-
nifold with a Riemannian geometry of Sym+(n) ∼= GL+(n)/SO(n), the space of symmetric
positive-definite matrices. The space Sym+(n) is curved with constant negative curvature.

Proof. A Riemannian metric on the spaceMX will be introduced in terms of a scalar product on
the vector space TC[MX , made up of tangent vectors ∂C[ to all curves C[(t) passing through
the point C[

X ∈MX . For this, the formula (34)

∂C[ = 2Φ∗t (d
[) ,

relating vectors ∂C[ in MX with the rate-of-deformation tensor fields d[ over S, becomes
crucial. Since the scalar product g(u, v) = giju

ivj = uiv
i of two vectors from S naturally

extends to the scalar product of symmetric covariant 2-tensors (see 82)

(g] ⊗ g])(d[, h[) = gikgjl dij hkl = dij h
ij , (47)

its corresponding counterpart in reference configuration B, thanks to (34), has the following
form

ΓX(D[, H[) = BikBjlDij Hkl = Bi
kD

k
l B

l
nH

n
i ≡ tr (C−1DC−1H) (48)

and it represents the scalar product of two symmetric covariant tensors of second order D[ =
Φ∗t (d

[), H[ = Φ∗t (h
[). For more about geometry of Sym+(n) see Bhatia (2007) and Fiala

(2007), where further references are included.

PROPOSITION 3: A Riemannian metric on M is given by (Fiala (2007))

ΓC[(D[, H[) : =

∫
B

ΓX(D[, H[) dm =

∫
B
BikBjlDijHkl dm , (49)
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where dm denotes the mass element.

PROPOSITION 4: The convective stress field K[ = Φ∗t (Jσ
[) is a vector, and the second

Piola-Kirchhoff stress field P ] = Φ∗t (Jσ
]) a covector.

Proof. In fact, the power of internal forces (stress power) can be written in several ways:

δEi
δt

: =

∫
S
(g] ⊗ g])(σ[, d [) dv ≡

∫
S
gikgjlσkl dij dv =

=

∫
B
Bik
t B

jl
t Kkl

1
2
∂Ct ij dV = ΓC[

t

(
1

ρB
K[,

1

2
∂C[

t

)
(50)

: =

∫
S
〈σ], d[〉TxS dv ≡

∫
S
σijdij dv =

=

∫
B
P ij 1

2
∂Ct ij dV =

∫
B
〈P ], 1

2
∂C[

t 〉TXB dV =

〈
1

ρB
P ],

1

2
∂C[

t

〉
T

C[
t
M

(51)

where we made use of relations 1
2
∂C[

t = Φ∗t (d
[), JdV = Φ∗t (dv), and dV =G

1
2dX for volume

element. The symbol σ as usual stands for the Cauchy stress field. The quantities 1
ρB
K[, resp

1
ρB
P ] are the convective stress, resp the second Piola-Kirchhoff stress fields related to the mass,

instead of the volume element.

PROPOSITION 5: If the material is hyperelastic, then

1

ρB
P ] = 2dMEi i.e. (P ])ij(X) = 2

∂ε

∂Cij
(X) = 2ρB

∂e

∂Cij
(X) , (52)

where dM stands for exterior derivative / diferential corresponding toM (see Frankel (1997),
Marsden & Hughes (1993), or Schutz (1999) for example), and Ei =

∫
Bε dV =

∫
BρB e dV .

Proof. A change in strain energy ∆Ei in the body B after deformation process C[ :〈t0, t〉 →M
can be written down in terms of a curve integral

∆Ei =

∫
〈t0,t〉

〈
1

ρB
P ],

1

2
∂C[

t

〉
T

C[
t
M
dt ≡

∫
C[

t

1

2ρB
P ]. (53)

If the strain energy ∆Ei does not depend on the integration path, then the strain energy as
a function onM forms a potential, and so 1

ρB
P ] = 2dMEi. If we further express Ei as

Ei =

∫
B
ε dV =

∫
B
ρB e dV, (54)

then thanks to the local character of the metric Γ, i.e. the fact that Γ induces on each tangent
space TXB a scalar product, we have

1

ρB
P ] = 2dMEi = 2

∂Ei
∂Cij

(C[) dCij (55)

= 2

∫
B

(
∂ε

∂Cij
dCij

)
(X) dV = 2

∫
B

(
∂e

∂Cij
dCij

)
(X) dm ,
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which results into the following well-known local formula

(P ])ij(X) ≡ (P ](C[(X)))ij = 2
∂ε

∂Cij
(X) = 2ρB

∂e

∂Cij
(X) . (56)

PROPOSITION 6: The stress rate is given by the Zaremba-Jaumann objective time derivative.

Proof. We can naturally identify the time derivative of the time-dependent covector or vector
field Θ, and its corresponding 2-tensor field θ = Φt ∗(Θ) on E3, with the time derivative based
on covariant derivative inM with respect to the deformation rate ∂C[

t (cf. (25))

D

dt
Θ : =

∂Θ

∂t
+∇∂C[

t
Θ on the spaceM (57)

D

dt
θ : = Φt ∗

(
D

dt
Θ

)
on the space S. (58)

The symbol ∇ stands for the covariant derivative associated with the metric Γ on the manifold
M, which automatically guarantees an objectivity of the time derivative induced.

For a time-dependent vector field U along a trajectory C[
t inM, we thus obtain(

D

dt
U

)
mp

≡
(
∂

∂t
U +∇∂C[

t
U

)
mp

= U̇mp −
1

2

{
(∂Ct)maB

ab
t Ubp + UmaB

ab
t (∂Ct)bp

}
, (59)

for the covector field Ω, we analogically get(
D

dt
Ω

)ij
≡
(
∂

∂t
Ω +∇∂C[

t
Ω

)ij
= Ω̇ij +

1

2

{
Ωia(∂Ct)abB

bj
t +Bia

t (∂Ct)abΩ
bj
}
. (60)

Making use of (58) with the help of expression (22) we obtain the time derivatives of corre-
sponding second order tensor fields on S – the Zaremba-Jaumann derivative. For the symmetric
covariant tensor field of second order u on the actual configuration S, represented along a tra-
jectory C[

t inM by a vector field U = Φ∗t (u), such as the covariant Kirchhoff stress τ [ = Jσ[,
we obtain (

D

dt
u

)
mp

= u̇mp − w k
m ukp + umkw

k
p ≡

(
ůZJ
)
mp
. (61)

Similarly, for the symmetric contravariant tensor field of second order ω on the actual config-
uration S, represented along a trajectory C[

t inM as a covector field Ω = Φ∗t (ω), such as the
contravariant Kirchhoff stress τ ] = Jσ], is expressed by(

D

dt
ω

)ij
= ω̇ij − wik ωkj + ωikw j

k ≡
(
ω̊ZJ

)ij
, (62)

where 2wij = vi|j − vj|i is the vorticity. In particular, for the time derivative of the Cauchy
stress field σ] during deformation process we obtain

D

dt
σ] =

1

J
(̊τ ])ZJ − (trgd[)σ]. (63)
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PROPOSITION 7: The logarithmic strain field is a vector, and it corresponds to a geodesic line
(straight line) connecting undeformed state with deformed state.

Proof. A geodesic stands for a generalization of the straight line – locally the shortest connecting
line between two points. It can also be characterized, as in the Euclidean space alike, by the fact
that its tangent vectors form a parallel vector field, and so for our case it satisfies the equation
(cf. (59))

∇∂C[
t
∂C[

t = 0 , (64)

resulting in
∂Cij(t) = Cik(t)2D

k
j (65)

Its solutions are geodesics parametrized by the constant, mixed tensor fields 2Dk
j

Cij(t) = Cik(0) (exp 2tD)kj , (66)

where the exponential mapping means the matrix exponential (as usual in this paper by bold
capital letters we denote matrix fields made up from components of tensor fields, or their rep-
resentations as linear mappings).

If the geodesic is prescribed by an initial point C[
0 and an initial velocity ∂C[

0 , the matrix
field D reads

2D= B]
0 ∂C[

0 = B]
t ∂C[

t , (67)

if it is determined by two points C[
0 and C[

τ , then

2D= log (B]
0C

[
τ )/τ = log (B]

0C
[
1) . (68)

Recall that B = C−1. The geodesic (66), expressed in terms of mixed 2-tensor field equals to
Ct = G−1C[

t , and so

Ct = C0 exp(tB0 ∂C0) = C0 exp(tC−1
0 ∂C0) . (69)

If the initial point is I then Ct = exp(t ∂C0), and so 2D = ∂C0 = log C1, and the proposition
follows. Moreover, we have proved another two propositions:

PROPOSITION 8: A generalization of the logarithmic strain field, due to the foregoing inter-
pretation as a vector corresponding to a geodesic line connecting two deformed states C[

0 and
C[, is given by

C[ 7−→ logC[
0
(C[) : = H[

0
∼= 1

2
C[

0 log (B]
0C

[) . (70)

PROPOSITION 9: Resulting deformation from adding an increment H[ to a deformation C[ is
given by

H[ 7−→ expC[
0
(H[) : = C[

H[(1) ∼= C[
0 exp(2B]

0 H[) . (71)

4. Incremental approach to finite deformations

Incremental approach to finite deformations in fact reduces to a general theory of small defor-
mations that are step by step superposed on a known finite deformation to obtain a new, updated
finite deformation.
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Let us briefly return to deformation process via diffeomorphisms. The space of all diffeo-
morphisms of a body can be given a natural Riemannian geometry such that the geodesic in
this space, determined by a known diffeomorphism Φt (as the starting point) and by a vector
field v (as the velocity vector), is given by line segments determined at each point by individual
vectors of the vector field (see Ebin & Marsden (1970), theorem 9.1 (iii) ). That means, the
updated deformation at time t + ∆t, after superposed infinitesimal incremental deformation v
to a deformation at time t, is given by

Φt+∆t(X) ≡ (Ψ∆t ◦ Φt) (X) = Φt(X) + ∆t (v ◦ Φt) (X) , (72)

which is what one would anticipate.

But as the preceding section suggests, situation is completely different with the right Cauchy-
Green deformation tensor C[ due to the curvature of the space M. In fact, from the already
established vector field v superposed on the deformation C[

t ∈ M, the updated deformation
C[
t+∆t ∈M should be expressed in terms of the exponential mapping (cf. (69))

Ct+∆t = Ct exp
[
∆tC−1

t ∂Ct(v)
]

= Ct + ∆t ∂Ct(v) + 1
2!

(∆t)2 ∂Ct(v)C ∂Ct(v) + . . . , (73)

where the deformation rate ∂C[
t (v) ∈ TC[

t
M is given by (see (46) and Proposition 1)

∂C[
t (v) = 2Φ∗t

(
d[(v)

)
= Φ∗t (Lv g) = 2Φ∗t

(
(∇̂v[)sym

)
= (∇̃v[)sym . (74)

Again ∇̃ = Φ∗t (∇̂) denotes the covariant derivative associated with convective metric field C[
t

in B (see (20), (40)), and v = Φ∗t (v) denotes the convective velocity field (see diag. after (18)).

For the corresponding stress (cf. (56) and (60))

P ij
t+∆t =

∂ε

∂Cij

∣∣∣∣
t+∆t

and
D

dt
P ]
t 6= lim

∆t→0

P ]
t+∆t − P

]
t

∆t
≡ d

dt
P ]
t . (75)

Now we can compare from this geometric point of view the incremental approach of Green
& Zerna with that of Biot. Green & Zerna established the strain (deformation) increment in
the same form as (74), but for the updated deformation they employ just the first too terms of
(73). As for the stresses (75), they work with the simple time derivative, which does not result
in the Zaremba-Jaumann time derivative in actual configuration. On the other hand, Biot rightly
deduced the Zaremba-Jaumann derivative from mechanical considerations, but for the updated
deformation he still employs only the first too terms of (73).

5. Conclusion

Elaborating the approach to the mechanics of continua in the framework of the infinite-dimen-
sional Riemannian geometry, we have proved that the deformation tensor field and its corre-
sponding logarithmic strain field are two totally different quantities – a point and a vector in
the infinite-dimensional Riemannian manifold of Riemannian metrics, made up of the right
Cauchy-Green deformation fields. In this space, the logarithmic strain field forms a vector
determining locally the shortest connecting line – the geodesic – between the field of iden-
tity tensors representing the undeformed state and a deformation field representing a deformed
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state. Such an interpretation enables to introduce the logarithmic strain more generally for the
case where the initial state may be any deformed state (see (70)). This brings a new idea to the
problems related to the initial states that are not stress-free (see Bruhns et all. (2002)).

As for the differences between Green & Zerna and Biot, we can conclude that Biot actually
considers the stress space as if the underlying spaceM were curved, while the spaceM itself
as Euclidean vector space. Green & Zerna in both cases stem only from vectorial nature of the
spaceM of deformation tensor field.

Finally, I would like to point out other, very close applications of the geometry of the space
of symmetric positive-definite matrices. Namely, that of averaging symmetric positive-definite
tensors applied in elasticity Moakher (2006) and finding the closest elastic tensor of arbitrary
symmetry to an elasticity tensor of lower symmetry Moakher & Norris (2006), with underlying
mathematical exposition in Moakher (2005), and of using the so-called Riemannian elasticity
in image analysis Pennec et all. (2005) and Pennec (2006), again with mathematical exposition
in Pennec et all. (2006).

Appendix – Mathematical preliminaries

Let a continuous body B occupy a region of the three-dimensional Euclidean point space E3.
Now, from the technical point of view it is convenient to consider the Euclidean space E3 as
a Riemannian manifold E3. For our purposes it suffices to characterize the Riemannian mani-
fold as a set of points, with no privileged coordinate system, endowed with a Riemannian metric,
which enters the manifold via a scalar product on tangent spaces. For more of geometrical tools
relevant to continuum mechanics, see Frankel (1997), Schutz (1999), Dodson & Poston (1997)
or Abraham et al. (1988).

• The tangent space TXB is a linearized, infinitesimal neighbourhood of a point X∈ B. It
is a linear, finite-dimensional real vector space of all ”infinitesimal material line elements”
represented by vectors

u = c ′(0), (76)

tangent at the point X = c(0) to curves c(t) in B .

• The cotangent space T ∗XB is again a linear, finite-dimensional real vector space, now the space
of all linearized at the point X functions on B, called covectors :

lim
t→0

f [ c(t)]− f [X]

t
= 〈a, u〉TXB, (77)

where c ′(0) = u. From the viepoint of analysis, a covector corresponding to a function is given
by its Frchet derivative. On the other hand, from the geometric point of view, covectors are
linear mappings a from the tangent space u∈ TXB to real numbers 〈a, u〉TXB ∈ R, and so the
cotangent space T ∗XB is the dual to its tangent space.

• Let a triple of numbers {X i} denotes coordinates of a point X . Then the induced canonical
covariant basis {Gi} in the tangent space TXB, reads Gi : = ∂/∂X i ≡ ∂X i, whereas the
canonical contravariant basis {Gi} in the cotangent space Gi : = dX i, and of course

〈Gi,Gj〉TXB= δij . (78)
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• Having defined tensors on a manifold, we can introduce the key notion of Riemannian geo-
metry, namely the metric. It is a symmetric positive-definite covariant 2-tensor G defining the
scalar product G(u, v) of two vectors u, v ∈ TXB with the same footpoint X , and thus local
geometry in an infinitesimal neighbourhood of the point X

G(u, v) = Giju
ivj = uj v

j ≡ 〈u[, v〉TXB , (79)

where Gij = G(Gi,Gj).

Moreover, the metric G makes it possible to introduce a mapping G : TXB → T ∗XB via the
relation

G(u, v) = 〈Gu, v〉TXB , (80)

so that one can assign to a vector u an associated covector u[= Gu, and conversely to a covector
a an associated vector a]= G−1a. Of course u = u] and a = a[. The covectors are thus related
to ”infinitesimal material surface elements” represented by gradients at point X to surfaces,
defined by the level sets of functions ”f(X)=constant”. The so-called associated tensors t[, t]

to a mixed tensor t are (2-0)- and (0-2)-tensors respectively, defined by extending the mapping
G to 2-tensors. These operations correspond to raising and lowering indexes of components of
tensors, in classical approach.

The scalar product of vectors naturally extends to scalar product of tensors of arbitrary order.
In particular, for covectors we thus obtain

G](a, b) = Gijaibj = aib
i ≡ 〈a, b]〉TXB , (81)

for covariant 2-tensors(
G] ⊗G]

)
(d, h) = GikGjldij hkl = dij h

ij ≡ d : h , (82)

where Gij is defined by Gij G
jk = δki , and naturally Gij = G](Gi,Gj).

• A mapping Φ : B → S between two manifolds induces the tangent mapping TΦ between
corresponding tangent spaces TΦ : TXB → TxS, where x= Φ(X). In mechanics, it is usualy
denoted as F, and incorrectly called the ”deformation gradient” although it is not a gradient at
all. To the tangent mapping TΦ one can assign its dual mapping (TΦ)∗ : T ∗xS → T ∗XB, and its
transposed mapping (TΦ)T : TxS → TXB (see Remark-3).

• The tangent mapping with its dual defines then push-forward Φ∗ and pull-back Φ∗ operations
between corresponding spaces of tensors. If the mapping Φ is a diffeomorphism, these then in
a simple way couple the description of deformation and stress state in the reference and actual
configurations: In fact, the description of the motion in the reference (actual) picture is obtained
by pull-back (push-forward) of the actual (reference) picture (see Remark-4).

Remark-1 : Unlike the classical approach, making use of the dual space U∗ of a vector space
U enables us to define tensors more clearly, and distinguish between vectors and covectors, con-
travariant and covariant tensors, being considered here as different objects. Now, p-contravariant,
q-covariant (p-q)-tensors are elements of the sets T (p, q) = T (p, 0) ⊗ T (0, q) = U ⊗ · · · ⊗ U ⊗
U∗ ⊗ · · · ⊗ U∗, defining T (0, 0) = R. There is another equivalent definition of (p-q)-tensor, as
an element of the space of all polylinear functions Linp+q(U∗p× Uq,R) to real numbers R. For
2-tensor, see Remark-2.
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Remark-2 : Of particular importance in mechanics of continua are 2-order tensors: (0-2), (1-1),
and (2-0)-tensors elements of the spaces Lin2(U2,R), Lin2(U∗2,R), and Lin2(U∗× U,R), re-
spectively (i.e. covariant, mixed, and contravariant tensors). Because of m(u, v) = 〈m(v), u〉U
(cf. (80)), note that the natural isomorphism between m ∈ Lin2(U2,R) and m ∈ Lin(U,U∗)
holds. Thus

(0-2) : U∗⊗ U∗ ' Lin2 (U2,R) ' Lin (U,U∗)
(1-1) : U⊗ U∗ ' Lin2 (U∗×U,R) ' Lin (U,U∗∗) ' Lin (U,U)

(0-2) : U⊗ U ' Lin2 (U∗2,R) ' Lin (U∗,U∗∗) ' Lin (U∗,U)

(83)

Given a scalar product G on U (represented by G : U→ U∗), then for (0-2), (1-1), and (2-0)-
tensors a, b, and c, regarded as elements of Lin(U,U∗), Lin(U,U), and Lin(U∗,U) respectively,
it holds

a
(
≈ a ≡ a[

)
∈ (0-2) : G−1a ∈ (1-1) and G−1aG−1

(
≈ a]

)
∈ (2-0)

b ∈ (1-1) : Gb
(
≈ b [

)
∈ (0-2) and bG−1

(
≈ b ]

)
∈ (2-0)

c
(
≈ c ≡ c ]

)
∈ (2-0) : cG ∈ (1-1) and GcG

(
≈ c [

)
∈ (0-2)

(84)

Remark-3 : To any linear mapping L : U → V between two linear spaces, one can assign its
dual mapping L∗ : V∗ → U∗ between their dual spaces, such that

〈L∗a, u〉U =〈a,Lu〉V . (85)

Moreover, if these spaces are endowed with scalar produts G on U, and g on V, one can also
introduce the transposed mapping LT : V→ U defined by relation

G(LTv, u)= g(v,Lu). (86)

After combining this relation with g(v1, v2) = 〈gv1, v2〉V and G(u1, u2) = 〈Gu1, u2〉U, one
obtains

LT = G−1L∗g (87)

and the folowing diagram applies

U∗ V∗L∗oo

U
L

33

G

OO

V
LT

ss

g

OO

Remark-4:
For functions f on B, and h on S

pull-back Φ∗(h) = h ◦ Φ
push-forward Φ∗(f) = f ◦ Φ−1, (88)

for vectors V ∈ TXB, and v ∈ TxS
pull-back Φ∗(v) = (TΦ)−1 ◦ v ◦ Φ
push-forward Φ∗(V ) = TΦ ◦ V ◦ Φ−1,

(89)
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for covectors a ∈ T ∗XB, and A ∈ T ∗xS
pull-back Φ∗(a) = (TΦ)∗ ◦ a ◦ Φ

push-forward Φ∗(A) = (TΦ)−∗◦ A ◦ Φ−1,
(90)

for general tensors Θ on B, and θ on S
pull-back Φ∗(θ)(A, ... ;V ) = θ (Φ∗(A), ... ; Φ∗(V ))
push-forward Φ∗(Θ)(a, ... ; v) = Θ (Φ∗(a), ... ; Φ∗(v)). (91)

In the case of 2-order tensors in the representation by Remark 2, one obtains:

(0-2) : a ∈ Lin (TxS, T ∗xS)→ Φ∗(a) = (TΦ)∗ a TΦ ∈ Lin (TXB, T ∗XB)
(1-1) : b ∈ Lin (TxS, TxS) → Φ∗(b) = (TΦ)−1 b TΦ ∈ Lin (TXB, TXB)
(2-0) : c ∈ Lin (T ∗xS, TxS) → Φ∗(c) = (TΦ)−1 c (TΦ)−∗ ∈ Lin (T ∗XB, TXB)

(92)

(0-2) : A ∈ Lin (TXB, T ∗XB)→ Φ∗(A) = (TΦ)−∗A (TΦ)−1∈ Lin (TxS, T ∗xS)
(1-1) : B ∈ Lin (TXB, TXB) → Φ∗(B) = TΦ B (TΦ)−1 ∈ Lin (TxS, TxS)
(2-0) : C ∈ Lin (T ∗XB, TXB) → Φ∗(C) = TΦ C (TΦ)∗ ∈ Lin (T ∗xS, TxS)

(93)

Of course, Φ∗(Θ) = (Φ−1)
∗
(Θ) = (Φ∗)−1(Θ), and vice versa.
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