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Summary: Vibration-based damage detection methods are usualy based on 
comparison of the natural frequencies and mode shapes of test structure gained 
by experimental modal analysis with their analytical counterparts computed using 
FEM model. In this context the modelling method of damaged region plays key 
role in parametric methods of damage detection. This paper is concerned with the 
modelling of the shell element damaged by line crack. The main idea lies in using 
detailed finite subelement modelling of the damaged shell element and subsequent 
reduction of element mass and stiffness matrices. Changes in inertia and stiffness 
properties of damaged shell element are closely analyzed and simulated example 
of damage detection is presented for comparison of matrix reduction method with 
classical method of damage modelling, i.e. change of Young’s modulus in 
damaged element. 

1. Introduction 
It is well known that even slight cracks or small damages can influence the dynamic 
behaviour of mechanical structure at significant level. Since this behaviour can be described 
by means of the modal system parameters, changes in inertia and stiffness properties of 
structure will induce an appropriate change in natural frequencies and mode shapes. This fact 
together with the need of non-destructive global techniques for structure diagnosis has led to 
the continuous development of variety of so called vibration-based damage detection methods 
in a few past decades (see Yan et al. (2006) or Doebling et al. (1998) for review). 

In recent past growing attention is paid to plate-like structures which are very important in 
aerospace, automotive and civil engineering. In comparison with beam-like structures the 
damage detection of plates and shells is more complex problem in the field of experimental 
modal analysis as well as in the field of simulations and mathematical modelling. In present 
works two simple types of crack are usually considered: (1) reduction of stiffness (e.g. 
Cornwell et al., 1999, Bayissa & Haritos, 2007) and (2) reduction of thickness of given 
damaged area within one or more finite shell elements (e.g. Yam et al., 2002). In general, the 
changes in inertia properties are not considered. 
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This work has the aim of analysing the both inertia and stiffness properties of the shell 
element with line crack by the means of reduced mass and stiffness element matrices. Several 
crack situations with various positions are analysed using Finite Element Method (FEM). 
Results are presented graphically and derived matrices are used in simulated example of 
damage detection of free rectangular plate.  

2. Mathematical description  
Suppose that we have damaged rectangular plate divided into regular mesh of shell elements, 
where the length of crack is relatively small in comparison with the dimension of the mesh. In 
such case the reduction of stiffness or thickness of the whole element is not sufficient for 
locating the crack thus more detailed modelling is needed. For further analysis purposes, the 
damaged area, identical with appropriate FEM model element, can be modelled as rectangular 
plate divided into subelements, where corner nodes represent the nodes of considered 
damaged shell element. Crack or damage is modelled as discontinuity of the connection 
between neighbouring elements in appropriate node(s) as it is shown in Fig. 1.  

 
Desired mass and stiffness matrices of the element, in local coordinate system, can be derived 
by computation of reaction forces in subsequent analyses of distinct unit kinematic loads 
within all desired degrees of freedom (DOF), which are the out-of-plane deflection and 
rotations about in-plane axes, i.e. 3 DOFs per node, 12 DOF per element (in-plane 
deformations are irrelevant). In fact, this is computation of some kind of reduced FEM 
matrices, where master DOFs are the out-of-plane deflections and rotations in corner nodes i, 
j, k, l. Equation of motion for full model of the element in case of harmonic load is: 
 

tje fKqqM                                                         (1)  

crack 

(a) (b) 

4-node shell element 
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Fig. 1: Shell element with crack:  a) plate divided into rectangular 
elements   b) FEM model of the element with line crack 
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where M, K  are mass and stiffness matrices of the element for full mesh (Fig. 1b), q is 
corresponding displacement vector, f is vector of force amplitudes and  is driving frequency. 

Let qm be the master DOFs amplitude vector and let qs represent amplitudes of the 
remaining DOFs (i.e. slaves). Now assuming the harmonic response, equation of motion (1) 
can be expressed in block-matrix form: 

 
 

(2) 
 

 
where fm is vector of force amplitudes within master DOFs (while forces on slave DOFs are 
assumed to be zero). 

From (2) we have following equation for qs: 

 
(3) 

 
Using (3) we can write transformation formula for complete DOF vector q: 

 
 

(4) 
 

 

where T () is frequency-dependent transformation matrix. 
Finally, reduced element matrices can be computed as: 

 
(5a,b) 

 
where Mred, Kred  are element mass and stiffness matrices reduced into local (i.e. master 
DOFs) coordinates qm. 

For zero value of   equations (5) represent static reduction (also known as Guyan). 
Making reduction of element matrices for undamaged and damaged case (see Fig. 1b) we can 
get representation of damage as difference between appropriate mass and stiffness matrices: 
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where d
redM is mass matrix for damaged element, dmgM  is “mass matrix” of the damage, d

redK  

is stiffness matrix for damaged element, dmgK  is “stiffness matrix” of the damage. 

Now the damage can be incorporated into the FEM model of the plate by the means of 
mass and stiffness matrices. First the matrices of damage (6) should be transformed to global 
coordinate system of the plate and then added to corresponding global matrices. Let qg be the 
global coordinate vector and R the coordinate transformation matrix, containing partial 
derivations of local coordinates qm with respect to global coordinates: 

 

(7) 
 

It is clear that matrix R has non-zero values only for coordinates coupled with corner nodes of 
desired element. Finally the mass and stiffness matrices of damaged structure will be: 

 
(8) 

 

where d
gM  is global mass matrix of the structure with damage (crack), gM  is mass matrix of 

undamaged plate, d
gK  is global stiffness matrix of the structure with damage, gK  is stiffness 

matrix of undamaged plate.  

3. Analysis of the shell element with line crack  
In this section we will analyse inertia and stiffness properties of chosen shell element, which 
is square element of width 100 mm and thickness 4 mm. Material of the element is irrelevant 
for relative results, in this example commercial aluminium was chosen. We use mesh 5 by 5 
subelements for detailed modelling of this element. The length of crack we choose as three 
times the dimension of subelement, so for three neighbouring nodes (only internal) conection 
in direction perpendicular to the direction of crack is interrupted. Under such conditions we 
have total number of 16 different locations of the crack, i.e. 8 in both in-plane directions. 
Since it is hard to display and compare full matrices (of dimension 12 by 12) only diagonal 
terms are displayed as representatives. Figures 2 and 4 show percentual change of the 
diagonal terms of reduced mass matrices, computed using (5a), due to crack. Figures 3 and 5 
show percentual change of the diagonal terms of reduced stiffness matrices, computed using 
(5b). Results are presented only for four independent locations, remaining locations are given 
by rotation of the element by 90, 180 and 270 degrees counter-clockwise and gives same 
results. On the left side there are diagrams showing the geometry of the damage and on the 
right side there are corresponding plots of percentual change in diagonal terms versus local 
coordinates, which are the out-of-plane deflection (in z direction) and rotations about in-plane 
axes (x and y). Results for coordinates of the same type are grouped together for easier 
comparison and readability. There are both static (Fig. 2 and 3) and dynamic (Fig. 4 and 5) 
reduction results presented. Value of circular frequency  for dynamic reduction was chosen 
as 1885 rad.s-1 (300 Hz) with respect to frequency band usually considered within engineering 
structures (1 – 1000 Hz). 
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Fig. 2: Relative change of inertia due to line crack – static reduction 
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Fig. 3: Relative change of stiffness due to line crack – static reduction 
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Fig. 4: Relative change of inertia due to line crack – dynamic reduction 
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Fig. 5: Relative change of stiffness due to line crack – dynamic reduction 
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Analysis results can be summarized in following remarks: 

- damage has negative influence on stiffness, but positive influence on inertia; this 
implicates decreasing tendency in natural frequencies of damaged structure 

- dominant changes are in terms corresponding to rotation about axis parallel to 
direction of crack (i.e. y for locations 1 – 4) 

- magnitude of property change is greater for node(s) located near the crack 
- dynamic reduction (300 Hz) gives negligible differences in stiffness terms, but 

differences in inertia terms are significant (approx. +10%) 
- maximum change in stiffness term is -18% within rotation about y axis in node i for 

location no. 1 (static reduction) 
- maximum change in inertia is +85% within rotation about y axis in node i for location 

no. 2 (dynamic reduction) 

4. Damage detection using reduced element mass and stifness matrices 
Now let us demonstrate the advantages of using reduced element matrices in damage 
detection example. As a test structure we take 4 mm thick rectangular aluminium plate of 
dimensions 400 by 500 mm. Suppose we have identified the element where the damage is 
located and let it be the element no. 6 (see Fig. 6). Using detailed modelling of this element 
divided into 5 by 5 subelements we can get FEM model of the plate in the form (8), i.e. with 
damages of different dimensions and locations incorporated via reduced element matrices. 

 

 

In the next step we compare experimental and analytical natural frequencies represented by 
changes within 10 lowest natural frequencies for different damage locations and also for the 
case of damage modelled as reduction of stiffness (Young’s modulus) of the whole element. 
In our demonstration the experiment is simulated using FEM model of the plate with mesh of 
the density corresponding to the dimensions of subelements used for detailed modelling of the 
damaged element. This means the plate is divided into 20 by 25 elements and damage is 
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Fig. 6: Geometry of the damaged test plate 
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modelled as discontinuity in chosen damage location (Fig. 6). Let fex be the diferencies in 
experimental natural frequencies: 
 

(9) 
 

where fexh is experimental natural frequency of healthy structure, fexd is corresponding natural 
frequency of damaged structure.   

Simulated experimental natural frequencies for healthy and damaged case are presented in 
Table 1: 

 

Table 1: Simulated experimental natural frequencies (Hz) 
mode healthy  fexh damaged  fexd difference fex 

1 64.876 64.861 -0.015 
2 83.182 83.171 -0.011 
3 139.67 138.16 -1.51 
4 157.43 157.41 -0.02 
5 184.83 184.33 -0.50 
6 245.85 245.10 -0.75 
7 307.59 307.37 -0.22 
8 314.46 314.25 -0.21 
9 378.20 370.75 -7.45 
10 429.75 424.76 -4.99 

 

Similarly we can compute the differencies in analytical natural frequencies for every 
considered damage location and compare them with the experimental results: 

 
(10) 

 
where index an means analytical values corresponding to (9). 

Figure 7 shows absolute difference between analytical and experimental frequencies 
versus 16 damage locations for 10 lowest modes in the case of static reduction. Figure 8 gives 
same kind of results for dynamic reduction (300 Hz). Results for dynamic reduction are 
slightly different but give same conclusion that the damage location no. 1 identifies the 
experimental one precisely. 
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Fig. 7: Absolute changes of natural frequencies depending on 
damage location – static reduction 
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Fig. 8: Absolute changes of natural frequencies depending on 
damage location – dynamic reduction 
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Let us make comparison with the case when static reduction of stiffness matrix of the crack is 
used only, i.e. damage does not change the inertia properties. Figure 9 presents absolute 
differences between analytical and experimental frequencies versus 16 damage locations for 
10 lowest modes in same manner as Fig. 7 and 8. 
 

 

Using only stiffness of the damaged element we get significantly worse results, but the true 
position of the crack can be still uniquely determined. 

For comparison with classical damage detection methods we compute natural frequencies 
for damaged element modelled with uniformly reduced stiffness (i.e. by change in Young’s 
modulus for element no. 6). Figure 10 shows differences between analytical and experimental 
frequencies versus 10 values of Young’s modulus ratio for 10 lowest modes. Best results are 
achieved for value 0.8 of the stiffness ratio; however, frequency changes can not match the 
experimental ones in no way. 

For numerical evaluation we define following Frequency Difference Index (FDI), defined 
as Euclid norm of frequency changes within 10 lowest modes: 

 
 

(11) 
 

 
where i is mode number. 
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Fig. 9: Absolute changes of natural frequencies depending on 
damage location – only stiffness matrix considered 
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In Table 2 computed values of FDI are summarized for previously analyzed cases. 

 
Table 2: Frequency difference index (Hz) for damage detection 

damage 
location static reduction dynamic reduction stiffness matrix only 

1 0.89 1.04 2.85 
2 2.12 4.14 3.4     
3 2.15 1.44 5.3     
4 6.17 5.5 7.1     
5 9.6 9.3 9.1     
6 10.6 10.3 9.7     
7 10.6 10.3 9.8     
8 9.6 9.3 9.3     
9 6.5 5.9 7.4     

10 2.70 1.57 5.6     
11 1.78 3.18 4.1     
12 2.44 1.75 4.3     
13 9.5 9.2 8.8     
14 10.5 10.0 9.7     
15 10.5 10.1 9.7 
16 9.5 9.2 8.3 
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Fig. 10: Absolute changes of natural frequencies – damage 
modelled as stifness reduction in damaged element 
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One can see that dynamic reduction gives no improvement in detection of the true damage 
location. Regardless on the type of matrix reduction, value of FDI is reliable indicator of the 
true location of the damage and can be recommended for use in damage detection. Also it is 
clear that inertia effect is important in damage detection and can not be neglected (as it can be 
seen from the third column of  Table 2). 

5. Conclusions 
New approach in damage modelling of plate-like structures has been introduced which is 
capable to match the changes in modal properties more precisely then classical methods like 
stiffness and thickness reduction. Main feature of this method is the possibility of modelling 
true geometry of damage in the case of line crack. Using static or dynamic reduction of 
element matrices the damage can be easily incorporated into simplified FEM model with both 
inertia and stiffness properties considered in good agreement with full FEM model. 

Simulated example of damage detection has shown the idea of matrix reduction to be 
well-founded. The best results were achieved for static reduction of stiffness and mass 
matrices. It has also been proved that change in inertia of the damaged element plays 
important role and can not be neglected. In the case of line crack the classical methods of 
damage modelling give significantly worse results in comparison with proposed matrix 
reduction method. 
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