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APPLICATION OF EXPLICIT FORMULATION OF DAMPING FORC E
OF POLYURETHANE FOAM IN CASE OF HARMONIC KINEMATIC
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Summary: Article deals with approximation of damping force of PU foam
specimen being compressed. Two different methods of determination of
approximating function parameters are used and outcomes compared. First
method is based on keeping position of damping force extreme, and the other on
keeping value of damping force extreme.

1. Introduction

In technical handbooks as JuliS & Brepta (1987)Boebta & Rist & Turek (1994) it is
possible to find out that damping force of elagiements, at which damping depends on
displacemenk and is realized by energy dissipation inside thatemal, can be defined by
equation (1). This formulation appears to be applie in case of description of damping
force of polyurethane foam being compressed.

Fa(%,%) = b, |[x|x. (1)

Because the specimen was loaded by only positeegnted deformations (with respect to
suitable coordinate system) it is possible to leawethe absolute value in equation (1) and
rewrite it in form (2). The task then lies in fimgdi the coefficienb, and exponent.

F, (X X) =b,x"X. (2)

2. Experimental part

Experimental data of damping force was acquiredthduuniaxial compressing of a specimen
of PU foam of cuboidal shape with base dimensid@® & 100) mm and hight 50 mm by
harmonical course of displacementMeasurements were carried out for many combinatio
of mean value A, 0{20,25,3¢Q mm, amplitudeA]{135,7,resp1Q} mmand frequency

fO{ 010507115234,5,6,:810 Hzof harmonical exciting signal.

" Ing. David Cirkl, Ph.D.: Technical University afberec, Studentska 2; 461 17 Liberec; Departénoén
mechanical engineering, tel.: +420 485 354 15@Q; 420 485 354 147; e-mail: david.cirkl@tul.cz

104



3. Method

In case of dynamical compression
of the PU foam specimen by
harmonical displacement x(t)
given by egn. (8) for one period
we get the hysteresis course of the.
measured total forcé as shown
in Fig. 1. Let us assume that the™
damping forceFq is distributed
around the skeleton curve of
hysteresis loop symmetrically.
Let us also assume that this x|

orce

skeleton curve represents just ‘ y y ]jisplace:mentx(t)
restoring forceFgr. In Fig. 1 at the ) " >
bottom there is course of dampig 4y >

force in  dependence on
displacemenk. This dependency
shows a typical pear-like Fy.
character with significant extrem -
valueF 4 at positionxe. S
Work  of damping force .
(dissipated energy) is given as arg Displacement x(1)
curve integral of damping force =
Fq with respect tx:

W, = | F,dx. ?3)

A

ing forc

>
>

In Fig. 2 there is dependency ofFig. 1. Measured force responce to kinematic
Wy on parameters of harmonicalexcitation by harmonical course of displacement and
exciting function of displacement its decompositio

x and its approximating function

W, reached by least square method. For a good appatiin it is enough to consider its
linear dependency on frequenicyfhe same is considerable in case of dependenegiwd of
damping force extrem&gye and its approximatiorF,, which is expressed by egn. (5) and
plotted in Fig. 3. Last needed function is depengaf position of damping force extreme on
parameters of exciting function. Experience shdves tve can assume the extreme position
independent on frequendyfor given mean value and amplitude of harmonicdlitation.
This measured dependency and its approximatjoare plotted in Fig. 4.

W, (A, A f)=-63.5529257A+6.30423188AA, -0.136537983AA; +

+59.0559709A% -5.12019696A% A, +0.117652453 A* A +

-16.4833678 f A+1.42860408F AA, -0.3098332680[10™ f AA? + 4)

+7.22417948 f A*-0.631783780 f A’A, +0.143600891[10" f A*A?
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(A, A f)=-211017839A+0.2897513956A,-0406436285M072 AA +
+506043803%\2-0.45868966722 A, +0101586749810" A2A? +

5)
-0.4526828028A+ 0335762687810 fAA,-0501189180810° fAA? +
+0.355450948fA*-0.311551638010™" fA’A, +0.701139273810° fA*A.
%, (A, A) = 0.453346120-0.521958498 A+ 0.0256 74855 A” + ©)
+0.976357237 A, +0.030854653 A, A+ 2.350721284[10* A, A*
3.1 Determination of a exponent
3.1.1 Calculation ofa from position 200 i
of damping force extreme _ 2000 A
z 7
For finding the exponent of function (2) & 10
extreme we put its derivative with 2,4,
respect tox equal to zero. If we have § o0
unequivocaly assigner and x — e.g.
by choosing of certain time course — it 0 .
is possible to assume the eqn. (2) as 12
function of one variable. Position of
extreme we denote ags recency ] 0 Ampide A ]
dFy _ (@) , ya OX | _ . :
—d=p |ax, T +x{—-|=0, Fig. 2: Dependence of work of damping force
dx dx W; on frequency, amplitudeA and mean value
where Ao of harmonic excitation signa¥\( — measured
dx _ x values (*),W, - approximation (surface))
o x

Thus we get the equation 20

a X 100
X—+?—O. (7) "

e

Force Fde, Fde [N]

60

40

Specially for harmonical function of
displacement x we get system of

\
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H . 7= Z =
equations: s A4=20 mm
<=
S
= i =
X= A+ Asin(a), (8) . <
< s
8 = 6
X = Aacost), (9) 10 , 4
12 o .
2 Frequency f [Hz] Amplitude A [mm]
X=-Aw sin(at ) (10)

Fig. 3: Dependence of value of damping force
From this we can now express theextremeFq on frequencyf, amplitude A and
velocity x and the acceleratiox as mean valuéy, of harmonic excitation signaF e

functions (11) and (12) depending only— measured values (*)F,. - approximation
on displacement. (surface))
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X(x) = —a?(x— Ay). (12) ©

35 M

]

We substitute these results into eqn. (7«
wherex = x. and we get

Xe, X [MM

30

g
£ 25
£+ X(Xe) = 5 0
X X°(X) £
g 15
_a, —J&—%).ﬂ
= 1= 12
Xq QJZIAZ - Pb)zl 25
After abbreviation of square of angular weanvaue Aqimm 0 Amplitude A [rmm]

velocity wwe obtain an implicit function
(13) which is possible to use forFig. 4. Dependence of damping force extreme

calculation of damping force extremeposition on amplitude and mean value of
position. In this equation the angularharmonic excitation signalx{ — measured
velocity @, respectively exciting values (*), &, - approximation (surface))
frequencf, is not present.

Xe ) A2 _(Xe_AO)2

By this it has been proved that damping force fdation (2) does not appear the dependency
of extreme position on exciting frequency, whahisccordance with observations.

a_ oA g (13)

Because the position of extremeis defined by aproximating function (5) &sit is possible
to use the eqn. (13) for exponentalculation in form (14).

X —_
a= 2(e A) 5 Ko (14)
A= (% - A)
As experience shows this way of exponertdetermination has a tendency to overestimate its
values for positions of extreme more displaced froean values. Because of this there is also

a reduced exponermt.q calculated by multiplication ofr by constank, wherek was set to
0.75 in entire range of calculations.

dq =K. (15)

3.1.2 Calculation ofa from value of damping force extreme

Another way ofa exponent determination is an numerical iterationathod where equation
(16) is solved until the difference between its ti@oms is less then set treshold. In this way
calculated exponent is further callegl

F.. —max{b,x'x)=0. (16)
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3.2 Determination ofby coefficient

As has already been written above the work of damporceW; for one loading period is
given by line integral of damping forde; with respect to displacement In egn. (3) we
substitute eqn. (2) fd¥q and we get:

2l w

W, =§Fddx=ba§ X xdx = b, j X7 (t) X2 (t)alt . (17)

Using time courses (8) and (9) where differembak A cost)dt, and substitutingd = ¢

we transform this integration to angular displacetm@omain ¢. Under consideration of
constant angular velocitgpduring one loading period we can write:

W, = bawzf[/% + Asin@)]’ [Acos@)]*dg.

Using expressiomw = 27f we rewrite this equation into form
W, =b,2r7f1,, (18)

where
o = 1,(A, Aa) = [[A + Asin@)]" [Acosp)] d¢ (19)

is integral independent on frequency of harmoneatiting signal. Otherwise the work of
damping forceWy depends on frequency linearly which is in accocgawith experimental
observation. Value of integral (19) is for given anevalue, amplitude and exponent
computed numerically. From eqgn. (18) we expresscibefficientb, where we substitute

work Wy for our purpose by approximatiofi, :

_ W,
T 2mfl,

(20)

4. Achieved results

Egn. (2) has been calculated for many combinatiohamean values, amplitudes and
frequencies of exciting harmonical signal. Thereengsed and compared three alternatives of
exponent denoted, a.eq andar. For selected combinations of exciting signal peeters they
are pictured in Fig. 5 (a), (b), (c). Simulated gémy force was calculated using real
(measured) kinematical quantitiesand x, not under consideration of their theoretical
harmonical course. From this reason there is natedach graph real mean value and
amplitude for which the data were acquired and Wwigice different from desired theoretical
values. This difference is given by control deviatof experimental device. Little deviations
of mean values have been neglected for the pumfgsieturing of measured data denoted (*)
in Fig. 2, and Fig. 3.

For quantification of simulation error there hagbaefined quantityr, given by eqgn. (21),
whereS is summation of deviations squared &id summation of measured values squared.
Fam here is denoted measured value of damping fordeFahnis corresponding sample of

108



simulated value. The quantiBs has been evaluated

measured samples in this interval. Value®pére in
frequency from 0.1 Hz to 10 Hz.
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Fig. 5 Comparison between damping forEg measured and calculated for different

alternatives ofa exponent determination and for

selected combinatiof parameters of

exciting harmonical signal (in captions there asted desired theoretical parametéssandA
and inside the picture there are presented reatuned ones)
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Fig. 6 Error of simulation;A;=20 mm,A=5mm, f 0(0.1+10) Hz
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Fig. 7 Error of simulation;A;=25 mm,A=5mm, f 0(0.1+10) Hz
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Fig. 8 Error of simulation;A;=30 mm,A=7mm, f 0(0.1+10) Hz
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5. Conclusion

Egn. (2) has been used for simulation of dampingefoof specimen of PU foam being
compressed. Three alternatives of coefficientietermination are presented and outcomes
compared. Numerical simulations show that for semallr there are not significant
differencies between them. For greatethe first way of its determination has a tendetwy
give the overestimate values which is well seerFigm 5 (c) and Fig 8. Simulation with
reduced exponertt.q andar gives qualitatively similar outcomes.
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