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Summary: Article deals with approximation of damping force of PU foam 
specimen being compressed. Two different methods of determination of 
approximating function parameters are used and outcomes compared. First 
method is based on keeping position of damping force extreme, and the other on 
keeping value of damping force extreme. 

1. Introduction 

In technical handbooks as Juliš & Brepta (1987) or Brebta & Půst & Turek (1994) it is 
possible to find out that damping force of elastic elements, at which damping depends on 
displacement x and is realized by energy dissipation inside the material, can be defined by 
equation (1). This formulation appears to be applicable in case of description of damping 
force of polyurethane foam being compressed. 

 xxbxxF &&
α

α=),(d . (1) 

Because the specimen was loaded by only positively oriented deformations (with respect to 
suitable coordinate system) it is possible to leave out the absolute value in equation (1) and 
rewrite it in form (2). The task then lies in finding the coefficient bα and exponent α. 

 xxbxxF &&
α

α=),(d . (2) 

2. Experimental part 

Experimental data of damping force was acquired during uniaxial compressing of a specimen 
of PU foam of cuboidal shape with base dimensions (100 × 100) mm and hight 50 mm  by 
harmonical course of displacement x. Measurements were carried out for many combinations 
of mean value { } mm30,25,200 ∈A , amplitude { } mm10.resp,7,5,3,1∈A and frequency  

{ } Hz10,8,6,5,4,3,2,5.1,1,7.0,5.0,1.0∈f of harmonical exciting signal.  
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3. Method  
In case of dynamical compression 
of the PU foam specimen by 
harmonical displacement x(t) 
given by eqn. (8) for one period 
we get the hysteresis course of the 
measured total force F as shown 
in Fig. 1. Let us assume that the 
damping force Fd is distributed 
around the skeleton curve of 
hysteresis loop symmetrically. 
Let us also assume that this 
skeleton curve represents just 
restoring force FR. In Fig. 1 at the 
bottom there is course of dampig 
force in dependence on 
displacement x. This dependency 
shows a typical pear-like 
character with significant extrem 
value Fde at position xe. 
Work of damping force 
(dissipated energy) is given as an 
curve integral of damping force 
Fd with respect to x: 

              ∫= xFW ddd .              (3) 

In Fig. 2 there is dependency of 
Wd on parameters of harmonical 
exciting function of displacement 
x and its approximating function 

dŴ  reached by least square method. For a good approximation it is enough to consider its 

linear dependency on frequency f. The same is considerable in case of dependency of value of 
damping force extreme Fde and its approximation deF̂  which is expressed by eqn. (5) and 

plotted in Fig. 3. Last needed function is dependency of position of damping force extreme on 
parameters of exciting function. Experience shows that we can assume the extreme position xe 
independent on frequency f for given mean value and amplitude of harmonical excitation. 
This measured dependency and its approximation ex̂  are plotted in Fig. 4. 
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Fig. 1: Measured force responce to kinematic 
excitation by harmonical course of displacement and 
its decomposition 
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3.1 Determination of αααα exponent 

3.1.1   Calculation of αααα from position 
of damping force extreme 

For finding the exponent of function (2) 
extreme we put its derivative with 
respect to x equal to zero. If we have 
unequivocaly assigned x and x&  – e.g. 
by choosing of certain time course – it 
is possible to assume the eqn. (2) as a 
function of one variable. Position of 
extreme we denote as xe. 
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Thus we get the equation 
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Specially for harmonical function of 
displacement x we get system of 
equations: 

             )sin(0 tAAx ω+= ,                 (8) 

             )cos( tAx ωω=& ,                    (9) 

             )sin(2 tAx ωω−=&& .               (10) 

From this we can now express the 
velocity x&  and the acceleration x&&  as 
functions (11) and (12) depending only 
on displacement x. 

 

Fig. 2: Dependence of work of damping force 
Wd on frequency f, amplitude A and mean value 
A0 of harmonic excitation signal (Wd – measured 
values (*), dŴ  - approximation (surface)) 

 

Fig. 3: Dependence of value of damping force 
extreme Fde on frequency f, amplitude A and 
mean value A0 of harmonic excitation signal (Fde 
– measured values (*), deF̂  - approximation 

(surface)) 
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We substitute these results into eqn. (7) 
where x = xe and we get 
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After abbreviation of square of angular 
velocity ω we obtain an implicit function 
(13) which is possible to use for 
calculation of damping force extreme 
position. In this equation the angular 
velocity ω, respectively exciting 
frequency f, is not present. 
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By this it has been proved that damping force formulation (2) does not appear the dependency 
of extreme position on exciting frequency, what is in accordance with observations. 

Because the position of extreme xe is defined by aproximating function (5) as ex̂ it is possible 

to use the eqn. (13) for exponent α calculation in form (14). 

 
( )

( ) e2
0e

2

0e ˆ
ˆ

ˆ
x

AxA

Ax

−−
−

=α .  (14) 

As experience shows this way of exponent α determination has a tendency to overestimate its 
values for positions of extreme more displaced from mean values. Because of this there is also 
a reduced exponent αred calculated by multiplication of α by constant k, where k was set to 
0.75 in entire range of calculations. 

 k⋅= αα red .  (15) 

3.1.2   Calculation of αααα from value of damping force extreme 

Another way of α exponent determination is an numerical iterational method where equation 
(16) is solved until the difference between its two terms is less then set treshold. In this way 
calculated exponent is further called αF. 

 ( ) 0maxˆ
ede =− xxbF &
α

α . (16) 

 

Fig. 4: Dependence of damping force extreme 
position on amplitude and mean value of 
harmonic excitation signal (xe – measured 
values (*), ex̂  - approximation (surface)) 
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3.2   Determination of bαααα coefficient 

As has already been written above the work of damping force Wd for one loading period is 
given by line integral of damping force Fd with respect to displacement x. In eqn. (3) we 
substitute eqn. (2) for Fd and we get: 

 ∫∫∫ ===
ωπ
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Using time courses (8) and (9) where differential ttAx d)cos(d ωω= , and substituting ωt = ϕ  

we transform this integration to angular displacement domain ϕ. Under consideration of 
constant angular velocity ω during one loading period we can write: 
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Using expression ω = 2πf we rewrite this equation into form 

 αα π IfbW 2d = , (18) 

where 
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is integral independent on frequency of harmonical exciting signal. Otherwise the work of 
damping force Wd depends on frequency linearly which is in accordance with experimental 
observation. Value of integral (19) is for given mean value, amplitude and α exponent 
computed numerically. From eqn. (18) we express the coefficient bα where we substitute 
work Wd for our purpose by approximation dŴ : 
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4.   Achieved results  

Eqn. (2) has been calculated for many combinations of mean values, amplitudes and 
frequencies of exciting harmonical signal. There were used and compared three alternatives of  
exponent denoted α, αred and αF. For selected combinations of exciting signal parameters they 
are pictured in Fig. 5 (a), (b), (c). Simulated damping force was calculated using real 
(measured) kinematical quantities x and x& , not under consideration of their theoretical 
harmonical course. From this reason there is noted in each graph real mean value and 
amplitude for which the data were acquired and which are different from desired theoretical 
values. This difference is given by control deviation of experimental device. Little deviations 
of mean values have been neglected for the purpose of picturing of measured data denoted (*) 
in Fig. 2, and Fig. 3. 

For quantification of simulation error there has been defined quantity R2 given by eqn. (21), 
where Se is summation of deviations squared and S is summation of measured values squared. 
Fdmi here is denoted measured value of damping force and Fdsi is corresponding sample of 
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simulated value. The quantity R2 has been evaluated in interval maxmin ; xxx ∈ ; n is number of  

measured samples in this interval. Values of R2 are in Fig. 6, 7, 8 for entire range of exciting 
frequency from 0.1 Hz to 10 Hz. 
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                  (a) A0=20 mm, A=5 mm                                     (b) A0=25 mm, A=5 mm                            

 

 

 

 

 

 

 

 

 

 

                                                              (c) A0=30 mm, A=7 mm 

Fig. 5 Comparison between damping force Fd measured and calculated for different 
alternatives of α exponent determination and for selected combinations of parameters of 
exciting harmonical signal (in captions there are noted desired theoretical parameters A0 and A 
and inside the picture there are presented real measured ones) 
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Fig. 6 Error of simulation;  A0=20 mm, A=5mm, 101.0 ÷∈f  Hz 
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Fig. 7 Error of simulation;  A0=25 mm, A=5mm, 101.0 ÷∈f  Hz 
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Fig. 8 Error of simulation;  A0=30 mm, A=7mm, 101.0 ÷∈f  Hz 
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5.   Conclusion 

Eqn. (2) has been used for simulation of damping force of specimen of PU foam being 
compressed. Three alternatives of coefficient α determination are presented and outcomes 
compared. Numerical simulations show that for smaller α there are not significant 
differencies between them. For greater α the first way of its determination has a tendency to 
give the overestimate values which is well seen in Fig. 5 (c) and Fig 8. Simulation with 
reduced exponent αred and αF gives qualitatively similar outcomes.  
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