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Summary: The paper contributes to solving optimal flow 3D prob-
lems in the context of laminar incompressible flows of Newtonian fluid
in rigid ducts. A stabilization of the finite element solution is required
in case of problems of low viscosity (air) flows. Analytical sensitivity
formulae for extra terms originating from the stabilization of the fi-
nite element discretized Navier-Stokes equations are presented, since
the analysis of flow sensitivity to shape changes of a fluid domain has
a crucial influence on efficiency of a shape optimization algorithm.
Preliminary numerical examples are shown, employing our theoreti-
cal results within a steepest descent optimization algorithm.

1. Introduction

Our aim is to find 3D optimal shapes of rigid ducts for problems involving laminar incom-
pressible flows of Newtonian fluid. There are many industrial applications for this task, such
as conduits for efficient cooling, exhaust piping, or related task concerning external flows, e.g.
wing and blade profiles, or vehicle aerodynamics. Shapes of channels or obstacles placed in the
stream influence important features of the flow, thus, present an important control handle for
(bio)chemical processes, cooling, convected reaction-diffusion (e.g. catalysis, drug delivery),
combustion, mixing, etc.

The option of analysing flow sensitivity to shape changes of a fluid domain allows for re-
sorting to gradient-based optimization methods; then the quality of such analysis has a crucial
influence on efficiency of the selected optimization algorithm. The sensitivities of the standard
problem setting involve just standard terms of Navier-Stokes equations that were treated already
in Rohan and Cimrman (2006). Since the stabilization of the finite element solution is required
in case of problems of low viscosity (air) flows, in this paper we present analytical sensitiv-
ity formulae for extra terms originating from stabilization of finite element discretized Navier-
Stokes equations, cf. Matthies and Lube (2007), describing laminar incompressible flows of
Newtonian fluid.

The paper overview is as follows. In Section 2 we present the flow problem formulation,
in Section 3 we introduce the Oseen iterations and record the stabilization technique, thereby
modifying the state problem of the optimal shape problem which is defined in Section 4; therein
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also the sensitivity analysis is developed using the domain method involving the virtual design
speed. Preliminary results obtained with the stabilized finite element approximation of the
Navier-Stokes equation are presented in Section 5 and compared to the results of the standard
Navier-Stokes equations for a moderate kinematic viscosity (∼ 10−3). All numerical examples
were computed using our software SfePy, see Cimrman et al. (2008).

2. Variational formulation of flow problem

The problem is defined in an open bounded domain Ω ⊂ IR3 with two (possibly overlapping)
subdomains defined as

Ω = ΩD ∪ ΩC with ΓC = ∂ΩD ∩ ∂ΩC , (1)

where ΩC is the control domain and ΩD is the design domain, see Fig. 1. The shape of ΩD is
modified exclusively through the design boundary, ΓD ⊂ ∂ΩD \ Γin−out where Γin−out ⊂ ∂Ω
is the union of the “inlet-outlet” boundary of the channel; in general Γin−out consists of two
disjoint parts, Γin−out = Γin ∪ Γout.

Γin Γout
ΓD

ΓD

ΓC ΩC

ΩD

Ω

Fig. 1. The decomposition of domain Ω, control domain ΩC at the outlet sector of the channel.

We seek a steady state of an incompressible flow in Ω by solving the following problem: find
a velocity, u, and pressure, p, fields in Ω such that (ν is the kinematic viscosity)

−ν∇2u + u · ∇u +∇p = 0 in Ω ,

∇ · u = 0 in Ω ,
(2)

with the boundary conditions

u = 0 on ∂Ω \ Γin−out , u = ū on Γin ,

−pn + ν
∂u
∂n

= −p̄n on Γout ,
(3)

where n is the unit outward-normal vector on Γout, ∂
∂n

= n · ∇ and ū is a given inlet velocity
profile. Note that by (3)2 we prescribe the stress in the form of pressure p̄, so that we enforce
the condition of ∂u

∂n
= 0, i.e. the flow is uniform in the normal direction w.r.t. Γout.

In the sequel we shall employ the following functional forms (i = 1, 2 or i = 1, 2, 3, sum-
mation convention is employed):

aΩ (u, v) := ν

∫
Ω

∇u : ∇v = ν

∫
Ω

∂ui

∂xk

∂vi

∂xk

,

cΩ (w, u, v) :=

∫
Ω

(w · ∇u) · v =

∫
Ω

wk
∂ui

∂xk

vi ,

bΩ (u, p) :=

∫
Ω

p∇ · u , gΓout (v) := −
∫

Γout

p̄ v · n dS ,

(4)
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and the space of admissible velocities

V0 = {v ∈ H1(Ω) | v = 0 on ∂Ω \ Γout} , (5)

where H1(Ω) = [H1(Ω)]3. Using the forms (4) we obtain the following weak problem: find
u ∈ V0(Ω) and p ∈ L2(Ω) such that

aΩ (u, v) + cΩ (u, u, v)− bΩ (v, p) = gΓout (v) ∀v ∈ V0 ,

bΩ (u, q) = 0 ∀q ∈ L2(Ω) .
(6)

3. Stabilization of solution

In order to be able to solve low viscosity problems (air flow in a channel, ν ≈ 10−5, a sta-
bilization of the finite element solution is required. In Matthies and Lube (2007) a promising
approach was published recently, combining both the inf-sup stable discretization (fulfilling the
Babuška-Brezzi condition) and convection stabilization strategies. As our software implements
those ideas, we recall here briefly the main results for the sake of paper completeness.

3.1. Generalized Oseen problem

The nonlinear Navier-Stokes equations (2) can be solved by a fixed-point or Newton-type iter-
ation. This leads to a generalized Oseen problem, where the convective term u · ∇u is replaced
by b · ∇u with the convection velocity b known (e.g. from the previous iteration step),

−ν∇2u + b · ∇u + σu +∇p = f in Ω ,

∇ · u = 0 in Ω .
(7)

The term σu originates from time discretization of the nonstationary Navier-Stokes problem,
σ ∼ 1

∆t
, consequently f are “modified” volume forces incorporating also the approximated

solution from the previous time (iteration); this is not present in our computations. In the
stationary case σ = 0. Let us denote

A ((u, p) , (v, q)) := aΩ (u, v) + cΩ (b, u, v)− bΩ (v, p) + bΩ (u, q) + σ(u, v)Ω ,

L ((v, q)) := (f , v)Ω + gΓout (v) ,

(u, v)G :=

∫
G

u · v . . . L2 inner product on G .

(8)

3.2. Grad-div, SUPG and PSPG stabilization

The weak form of the problem (7) is discretized by finite elements using inf-sup stable elements
(for example Taylor-Hood P2/P1 elements on simplices) leading to the discrete weak formu-
lation of the generalized Oseen problem: find uh ∈ Xh and p ∈ Mh such that (subscript h
indicates influence of the spatial discretization characterized by element size h > 0)

A ((uh, ph) , (vh, qh)) = L ((vh, qh)) ∀(vh, qh) ∈ (Xh0, Mh) , (9)

where Xh, Mh are appropriate finite element spaces and

Xh0 = {v ∈ Xh | v = 0 on ∂Ω \ Γout} . (10)
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Following the authors in Matthies and Lube (2007), we now introduce modified forms involving
parameters γ, κK and τK :

AS ((u, p) , (v, q)) := A ((u, p) , (v, q)) + γ(∇ · u,∇ · v)Ω

+
∑

K∈Th

(
−ν∇2u + b · ∇u + σu +∇p, κK(b · ∇v) + τK∇q

)
K

LS ((v, q)) := L ((v, q)) +
∑

K∈Th

(f , κK(b · ∇v) + τK∇q)K ,

(11)

where
⋃

K∈Th
K = Ω is a triangulation of Ω. Parameter γ controls the grad-div stabilization,

the terms with κK correspond to the streamline-diffusion (SUPG) stabilization and the terms
with τK mean the pressure (PSPG) stabilization.

3.3. Choice of stabilization parameters

Assuming scaling of the Oseen problem such that b∞ := ||b||∞ ∼ 1, and denoting CF ∼
diam(Ω) the Friedrichs constant for Ω, the stabilization parameters are chosen as follows:

γ = ν + b∞CF , (12)

τK and κK satisfy the following constraint where C is a suitable constant: and there exists a
constant C such that

0 ≤ τK ≤ κK ≤ C
min(1; 1

σ
)h2

K

ν + b∞CF + σC2
F + b2

∞min(
C2

F

ν
; 1

σ
)

. (13)

The theoretical considerations in Matthies and Lube (2007) require σ to be a positive constant
bounded away from zero. However, in practice, the stabilization may work even for stationary
problems with σ = 0.

3.4. Simplifying assumptions

The stabilization makes possible to use even P1/P1 elements on simplices. This was also our
choice, as it is the simplest case and the terms containing ∇2u disappear, simplifying thus the
sensitivity formulae below in Section 4.3.1. We also assume a stationary solution with σ = 0,
no volume forces, f = 0, and zero pressure tractions, p̄ = 0. Using the following notation
(i = 1, 2 or i = 1, 2, 3, summation convention is employed)

hK

(
b1, b2, u, v

)
:=

(
b1 · ∇u, (b2 · ∇v)

)
K

=

∫
K

b1
i

∂uk

∂xi

b2
j

∂uk

∂xj

,

gK (b, u, p) := (∇p, (b · ∇u))K =

∫
K

∂p

∂xi

bj
∂ui

∂xj

,

rK (p, q) := (∇p,∇q)K =

∫
K

∂p

∂xi

∂q

∂xi

,

(14)

the stabilized Oseen problem for given convective velocity b is now given by (c.f. eq. (9))

AS ((uh, ph) , (vh, qh)) = LS ((vh, qh)) ∀(vh, qh) ∈ (Xh0, Mh) , (15)
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which reads as (omitting subscript h):

aΩ (u, v) + cΩ (u, u, v)− bΩ (v, p) + γ(∇ · u,∇ · v)Ω

+
∑

K∈Th

κK (hK (b, b, u, v) + gK (b, v, p)) = 0 ∀v ∈ Xh0 ,

bΩ (u, q) +
∑

K∈Th

τK (gK (b, u, q) + rK (p, q)) = 0 ∀q ∈ Mh .

(16)

Note that b = u after convergence of the Oseen iteration, when the non-linear Navier-Stokes
system is in mind. This is the system for which we are going to derive the sensitivity formulae.

4. Optimal flow problem

In this section we first introduce the basic ingredients of the optimization algorithm, cf. Haslinger
and Mäkinen (2003), Rohan and Whiteman (2000). Then we define a shape optimization prob-
lem seeking an optimal flow, and describe a domain method of shape sensitivity analysis w.r.t.
changes of the design domain ΩD. Finally comes the core of this article — the sensitivity
formulae for the additional stabilization terms introduced in (14) of Section 3..

4.1. Overview of the techniques used

We use a domain (volume) approach to the shape sensitivity analysis which is based on the
material derivative idea of the continuum mechanics. From the computational point of view,
the main ingredient of the method is a sufficiently smooth “design velocity” field defined in
the whole fluid domain, which in the consequence defines the finite-element mesh perturbation.
Such a design velocity field has the support only in those part of the fluid domain, where the
mesh can be modified by changing the design, therefore it must vanish on the fixed part of the
boundary. This field can be constructed in several ways differing each other in their complexity
and universality of application. In Rohan and Cimrman (2006) we described a computational
domain parametrization using the free-form deformation (FFD) approach, which provides the
design velocity very efficiently and easily.

Given a design velocity field, partial sensitivities of the involved terms (e.g. diffusion, con-
vection, stabilization terms) are derived by using partial shape derivatives in the direction of
the design velocity. By virtue of the adjoint equation technique, these are used along with the
adjoint state solution to define a gradient of an objective function of the optimization, which is
subsequently used in a gradient-based minimization method. Relatively cheap computation of
the shape sensitivities allows us to use efficiently the steepest descent algorithm to minimize the
objective function.

4.2. Shape optimization problem

Our objective is to minimize the objective function Ψ(u, p) w.r.t. some criterion (see below) by
means of varying ΓD:

min
ΓD

Ψ(u, p) ,

subject to: (u, p) satisfy (16) , with b = u ,

ΓD in Uad(Ω0) .

(17)
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Above (17)2 imposes the admissibility of the velocity and pressure fields, whereas (17)3 restricts
shape variation of ΓD w.r.t. some “initial” shape inherited from the reference domain Ω0 which
defines the associated set of admissible shapes, Uad(Ω0), given by the parametrization of ΩD

shape, see Rohan and Cimrman (2006).
We can use, for example, the following objective functions (possibly their mutual combina-

tions) targetted to:

1. Achieve most uniform as possible flow in control region:

Ψ1(u) =
ν

2

∫
ΩC

|∇u|2 =
1

2
aΩC

(u, u) . (18)

Here we wish to enhance flow uniformity by reducing the gradients of flow velocities
in ΩC . The objective function does not depend on the pressure p. Moreover, if ΓD ⊂
∂ΩD \ (Γin−out ∪ ∂ΩC), the control domain ΩC does not depend on design modifications,
which simplifies the sensitivity formulae.

2. Minimize inlet-outlet pressure difference:

Ψ2(p) =

∫
Γin

p−
∫

Γout

p̄ . (19)

In this case the pressure loss is minimized. Recall that p̄ is a given outlet pressure.

4.3. Sensitivity analysis – domain method

The aim of this section is to introduce the sensitivity formulae which describe how the quantities
of interest change when the design domain is being modified. More precisely, we follow the
approach of the material derivative associated with the so-called design velocity field ~V : ΩD →
IR3 representing an artificial flux of material particles. Thus, for any (feasible) infinitesimal
design change in the direction of velocity field ~V we shall be able to predict the associated
sensitivity as the directional domain derivative. In what follows, by δf we refer to the total
(directional) derivative of a function, or functional f , whereas notation δDf is reserved for the
partial derivative w.r.t. domain perturbation (infinitesimal) in the direction ~V . Let u : Ω → IR
be a real valued function and fΩ(u) a real valued functional depending on domain Ω. The total
sensitivity of f is given by

δfΩ(u) = δDfΩ(u) + δufΩ(u) ◦ δu , (20)

where δuF (u) ◦ v means the Gateaux differential of F (u) w.r.t. u in the direction v. In the
optimal shape problems, quantity u is typically the solution of a state problem considered, thus
depending on the design of Ω, so that δu is the (total) material derivative of u w.r.t. the domain
perturbation.

First we introduce the feasible design velocity fields in the context of our problem (17): ~V is
a feasible w.r.t. ΩD if and only if the following holds:

supp~V ⊂ ΩD and ~V = 0 on Γin−out ∪ ΓC ,

~V is differentiable in ΩD.
(21)
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4.3.1. Sensitivity formula and optimality conditions

In this section we present the sensitivity formula for computing δΨ(u) in the sense of (20). We
consider the Lagrangian associated with (17)

L(ΓD, u, p, w, q) = Ψ(u, p)

+ aΩ (u, w) + cΩ (u, u, w)− bΩ (w, p) + γ(∇ · u,∇ · w)Ω

+
∑

K∈Th

κK (hK (u, u, u, w) + gK (u, w, p))

+ bΩ (u, q) +
∑

K∈Th

τK (gK (u, u, q) + rK (p, q)) ,

(22)

where w ∈ Xh0 and q ∈ Mh are the Lagrange multipliers associated with the state problem
constraint imposed in (17). The desired sensitivity formula can be obtained using the KKT
conditions concerning the “inf-sup” problem

inf
ΓD,u,p

sup
w,q

L(ΓD, u, p, w, q) . (23)

We shall now consider only such paths in the set of all primary-variable states (ΓD, u, p), that
for each design ΓD we find its associated admissible state (u, p). With restriction to such paths
we compute the sensitivity of L, and remembering (20):

δL(ΓD, u, p, w, q) ◦ (V , δu, δp)

= δDaΩ (u, w) + δDcΩ (u, u, w)− δDbΩ (w, p) + γδD(∇ · u,∇ · w)Ω

+
∑

K∈Th

κK (δDhK (u, u, u, w) + δDgK (u, w, p))

+ δDbΩ (u, q) +
∑

K∈Th

τK (δDgK (u, u, q) + δDrK (p, q))

+ δDΨ(u, p)

+ aΩ (δu, w) + cΩ (δu, u, w) + cΩ (u, δu, w)− bΩ (w, δp) + γ(∇ · δu,∇ · w)Ω

+
∑

K∈Th

κK (hK (δu, u, u, w) + hK (u, δu, u, w) + hK (u, u, δu, w))

+
∑

K∈Th

κK (gK (δu, w, p) + gK (u, w, δp))

+ bΩ (δu, q) +
∑

K∈Th

τK (gK (δu, u, q) + gK (u, δu, q) + rK (δp, q))

+ δuΨ(u, p) ◦ δu + δpΨ(u, p) ◦ δp

= δΨ(u, p) ,

(24)

where the last equality follows from the state admissibility; indeed, for a given design ΓD,
the state admissibility conditions (16) hold, so that except of Ψ(u, p) all terms in (22) vanish.
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Expressing the KKT optimality conditions δu,pL = 0, we obtain the adjoint state problem:

δuL(ΓD, u, p, w, q) ◦ δu = 0 = δuΨ(u, p) ◦ v
+ aΩ (v, w) + cΩ (v, u, w) + cΩ (u, v, w) + γ(∇ · v,∇ · w)Ω

+
∑

K∈Th

κK (hK (v, u, u, w) + hK (u, v, u, w) + hK (u, u, v, w))

+
∑

K∈Th

κK (gK (v, w, p))

+ bΩ (v, q) +
∑

K∈Th

τK (gK (v, u, q) + gK (u, v, q)) ,

δpL(ΓD, u, p, w, q) ◦ δp = 0 = δpΨ(u, p) ◦ η

− bΩ (w, η) +
∑

K∈Th

κK (gK (u, w, η)) +
∑

K∈Th

τK (rK (η, q)) ,

(25)

for all v ∈ Xh0 and for all η ∈ Mh. The adjoint state problem allows eliminating the total
derivatives δu, δp from sensitivity formula (24). It is readily seen that, on substituting in (25)
the test functions v = δu, η = δp, in (24) we may cancel all terms except the partial design
sensitivities δD∗. Therefore, the sensitivity analysis with restriction to the admissible states is
performed, as follows: Given a design ΓD, adjust domain ΩD and

- compute the admissible state (u, p) by solving (16),

- compute the adjoint state (w, q) by solving (25),

- compute the sensitivity w.r.t. given design velocity field ~V using

δΨ(u) = δDaΩ (u, w) + δDcΩ (u, u, w)− δDbΩ (w, p) + δD(γ(∇ · u,∇ · w)Ω)

+
∑

K∈Th

κK (δDhK (u, u, u, w) + δDgK (u, w, p))

+ δDbΩ (u, q) +
∑

K∈Th

τK (δDgK (u, u, q) + δDrK (p, q))

+ δDΨ(u, p) .

(26)

Often δDΨ(u, p) = 0: for example in (18), where Ψ(u, p) is evaluated over ΩC that does not
depend on design modifications.

Below we shall derive the particular partial design sensitivities employed in (26), which
depend on ~V . We also repeat, for the sake of completeness, the formulae for the standard
Navier-Stokes problem (6) already presented in Rohan and Cimrman (2006).

4.3.2. Partial shape derivatives

Once the design velocity field is defined, the design domain can be parametrized by means of a
scalar parameter τ : let ~V is feasible according to (21), we introduce

ΩD(τ) = {y} where yi(x, τ) = xi + τVi(x) , x ∈ ΩD, τ ∈ IR . (27)
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Above and in what follows by ΩD we denote the fixed domain, whereas ΩD(τ) is the perturbed
one. Recalling the general sensitivity relation (20), we define the partial shape derivative of
fΩ(u)

δDfΩ(u) =
d

d τ

(
fΩD(τ)(u)

)
τ=0

. (28)

In order to compute the partial shape derivative involved in (26), we need the following prelim-
inaries, which are easy to verify (J(y(x, τ)) = det[∂yi(x, τ)/∂xj]):

δD

(
∂yi

∂xj

)
=

d

d τ

(
∂yi(x, τ)

∂xj

)
τ=0

=
∂Vi(x)

∂xj

,

δD

(
∂xk

∂yj

)
=

d

d τ

(
∂xk

∂yj(x, τ)

)
τ=0

= − ∂Vk(x)

∂xj

,

δD (J(y)) =
d

d τ
(J(y(x, τ)))τ=0 =

∂Vi(x)

∂xi

= div~V .

(29)

We are now ready to apply (28) to variation of aΩ (u, w); note that only ΩD is being perturbed
because of restricted support of ~V , so that δDaΩ (u, w) = δDaΩD

(u, w). Therefore, we consider

aΩD(τ)
(u, w) = ν

∫
ΩD(τ)

∂ui

∂yk(τ)

∂wi

∂yk(τ)
dy

= ν

∫
ΩD

∂ui(x)

∂xj

∂xj

∂yk(x, τ)

∂wi(x)

∂xl

∂xl

∂yk(x, τ)
J(y(x, τ)) dx .

(30)

On differentiating above w.r.t. τ , using (29) we get the desired expression

δDaΩ (u, w) = ν

∫
ΩD

[
∂ui

∂xk

∂wi

∂xk

divV − ∂Vj

∂xk

∂ui

∂xj

∂wi

∂xk

− ∂ui

∂xk

∂Vl

∂xk

∂wi

∂xl

]
. (31)

In much the same way one finds the formulae for other sensitivities involved in (26):

δDcΩ (u, u, w) =

∫
ΩD

[
uk

∂ui

∂xk

wi divV − uk
∂Vj

∂xk

∂ui

∂xj

wi

]
, (32)

δDbΩ (u, q) =

∫
ΩD

q

[
divu divV − ∂Vk

∂xi

∂ui

∂xk

]
, (33)

δD(∇ · u,∇ · w)Ω =

∫
ΩD

[
divudivwdivV − ∂Vk

∂xi

∂ui

∂xk

divw − divu
∂Vk

∂xi

∂wi

∂xk

]
, (34)

δDhK

(
b1, b2, u, v

)
=

∫
K

[
(b1 · ∇)uk(b2 · ∇)vkdivV

− b1 · ∇Vi
∂uk

∂xi

(b2 · ∇)vk − (b1 · ∇)ukb2 · ∇Vi
∂vk

∂xi

]
,

(35)

δDgK (b, u, p) =

∫
K

[
∂p

∂xi

b · ∇uidivV − ∂Vk

∂xi

∂p

∂xk

b · ∇ui −
∂p

∂xi

b · ∇Vk
∂ui

∂xk

]
, (36)

δDrK (p, q) =

∫
K

[
∇p · ∇qdivV −∇Vk

∂p

∂xk

· ∇q −∇p · ∇Vk
∂q

∂xk

]
. (37)

We may conclude that using (31)-(37) (plus possibly δDΨ(u, p) for some particular objective
functions) applied in (26), the total shape derivative can be recovered for any feasible ~V; con-
struction of such ~V for our specific design parametrization was addressed in Rohan and Cimr-
man (2006).
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5. Examples

Here we present some preliminary results obtained with the stabilized finite element approxima-
tion of the Navier-Stokes equation (16). Other examples can be found in Cimrman and Rohan
(2007).

In the examples presented below we use ν = 1.25 · 10−3. A consistent unit set {m, s, kg} is
used. Concerning the boundary conditions, the velocity component in the tube direction is set
to 1 on the inlet part of the boundary. On the walls we assume no-slip condition u = 0. On the
outlet we specify p̄ = 0. The boundary of the control domain ΩC does not depend on design
changes: ΓD ∩ ∂ΩC = ∅. The results are summarized in figures which show the domain shape
and the fluid flow within, as well as control boxes that govern the FFD parametrization of the
domain and hence the domain shape.

5.1. Numerical solution

The solution strategy differs for the standard system (6) and the stabilized one (16):

• The weak problem (6) is discretized by an inf-sup stable finite element discretization
(fulfilling the Babuška-Brezzi condition), namely by P1B/P1 elements (piecewise-linear
velocities enriched by a bubble function and piecewise-linear pressures). The resulting
system on nonlinear algebraic equations can be solved by the Newton iteration.

• The weak problem (16) is discretized using the simplest P1/P1 elements, violating the
Babuška-Brezzi condition; this is compensated by the extra stabilization terms. The re-
sulting system of nonlinear algebraic equations is solved using the Oseen iterations, see
Section 3.1..

All computations were performed by our software which can be found at http://sfepy.kme.zcu.cz,
cf. Cimrman et al. (2008).

5.2. Results of numerical simulations

First, the classical problem formulation was used, see Rohan and Cimrman (2006). In Fig. 2
a flow pattern is shown on a twisted tube geometry (diameter: 1 cm) prior to the shape opti-
mization. Enhancing the flow uniformity in ΩC , denoted by two grey planes in the figure, was
the objective, Ψ(u) = Ψ1(u), recall (18). The final design is shown in Fig. 3 — the objective
was improved by straightening the tube. The optimization algorithm needed 10 iterations with
40 objective function evaluations in 161 s (i.e. solving the direct problem (6)) and 11 objective
function gradient evaluations in 611 s.

Then the stabilized formulation proposed in Section 4. was employed. The stabilization
parameters were set according to (13), with the constant C = 0.1. The flow in the initial
design (same as in Fig. 2) is in Fig. 4. The final design is shown in Fig. 5 — here the objective
improvement resulted in“necking” the tube. The optimization algorithm needed 10 iterations
with 35 objective function evaluations in 197 s (i.e. solving the direct problem (16)) and 11
objective function gradient evaluations in 1223 s.
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Fig. 2. Classical unstabilized formulation – initial design. Flow and domain control boxes.
Control domain ΩC between two grey planes.

Fig. 3. Classical unstabilized formulation – optimized design. Flow and domain control boxes.
Control domain ΩC between two grey planes.
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Fig. 4. Stabilized formulation – initial design. Flow and domain control boxes. Control
domain ΩC between two grey planes.

Fig. 5. Stabilized formulation – optimized design. Flow and domain control boxes. Control
domain ΩC between two grey planes.
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Note that in both cases the shape changes of the domain are local — only the control boxes
relevant to the objective improvement move. In both examples the final designs were better
than the initial designs w.r.t. the objective functions used, see Fig. 6. In practice, however,
more constraints need to be added to the FFD control boxes to enforce, e.g. higher degree of
smoothness of the boundary, to prevent excessive deformation as in Fig. 4. It is also clear that
the stabilization terms influence the solution as well as the optimization procedure. The crucial
question is the choice of the stabilization parameters γ, τk and κK , which will be a topic of our
future research. The point is to stabilize sufficiently to allow solving high Reynolds number
flows and at the same time not to spoil the solution by an over-stabilization.

Fig. 6. Convergence of the steepest descent optimization algorithm, left: classical formulation,
right: stabilized formulation. Notation: of objective function, ||ofg|| norm of objective
function gradient, alpha line-search step.

6. Conclusions

In this paper we developed the sensitivity analysis for the stabilized optimal flow problem. The
adjoint technique of the analytical sensitivity analysis is very efficient and accurate compar-
ing to finite-difference based differentiation, especially when large number of design param-
eters is considered. According to the numerical tests performed for the so-called spline-box
parametrization (reported in Rohan and Cimrman (2006)) there is an evident need for involving
further optimization constraints concernig a required flow capacity and some enhanced smooth-
ness requirements imposed on the design geometry.
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