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SIMPLIFIED DYNAMIC MODEL OF THE TRANSMISSION 

V. Čech∗, J. Jevický∗∗ 

Summary: Within the framework of the grant project FT–TA3/103 of Ministry of 
Industry and Trade of the Czech Republic, the prototype of the passive 
optoelectronic rangefinder (POERF) is developed. A number of subsystems of this 
rangefinder needs to be solved in this connection. One of these subsystems is the 
transmission – usually with the same construction for the gearing in the elevation 
and in the traverse. The accuracy of the measured target coordinates depends 
both on the accuracy of the measured target range and on the accuracy of the 
measured target angle coordinates which are taken relatively towards the 
rangefinder position. The mathematical model of the rangefinder aiming system 
(special positional servomechanism) is published in Čech (2006). The dynamic 
model of the transmission is one of its important parts. The corresponding sub 
model is described in this paper. It makes possible the accuracy analysis of the 
acquisition process of the target angle coordinates. 

1. Introduction 
Mathematical model of the transmission described in this contribution resumes our older 
model which was published in the paper Čech & Jevický (2005). We have significantly 
improved the model of stiffness with the inclusion of influence of hysteresis in the gears and 
the model of losses in the system.  
 The system is considered to be a system with three degrees of freedom (self-locking 
transmission) or with two degrees of freedom (other transmissions) respectively. We will 
suppose nonlinear model with two degree of freedom (2-DOF-NL) in this paper. The 
application of the model to self-locking transmission will be presented in our next papers. 
 Models of stiffness have new structures. They allow simulations of impacts of gear 
backlashes and influences of mechanisms for clearance adjustment, too. The influence of 
hysteresis losses is included newly. 

Traditional models of gear losses make use of constant gear efficiency η, e.g. Mudrik 
(2007). Models fail in situations where the output gearbox torque T2  is very small or zero    
(η → 0). These states are very frequent in servomechanisms which allow tracking of slowly 
moving objects at big distances and so in this case the use of traditional models is impossible. 
We try to solve the problem by the use of the loss coefficient m2B, which depends on the 
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relative size of the output load m2 and on the relative input speed ν = ν1. The functionalities 
m2B = f(m2, ν1), are constructed by the help of data that are provided by transmission-makers 
and given in catalogues of gearboxes. 

We will compare our model (2-DOF-NL) with two traditional linearized models of 
gearboxes. First one has one degree of freedom (1-DOF-L) and second one has two DOF    
(2-DOF-L). There is supposed that gearbox efficiency is constant (η = const = ηC, Fig. 16). 
We choose   ηC = 0,9 for our analyze.  

The efficiency quantity depends on type of the lubricant, its temperature and the wear of 
the gearbox. There is usually supposed that the lubricant temperature is equal to the ambient 
temperature and the gearbox wear is insignificant. Catalogue values are given for the ambient 
temperature equal to approx. 20°C.  

The principle of the comparative analysis of the behavior and the characteristics of the 
gearbox models is presented on Fig. 1. There is the separately exited direct-current motor with 
constant field, thus the armature control is supposed. The servo-amplifier has a constant 
voltage gain KA.   The control signal is EC = uC /uCR [-] and it is equal to the control signal of  
the motor EZ = uZ / uZR, where uZR is rated armature voltage (uZR = 24 V) and the rated control 
voltage is uCR = uZR / KA. We selected DC motor with rated power approx. 180 W (the rated 
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Fig. 1 The principle of the comparative analysis of the behavior and the characteristics of the 

gearbox models  
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speed nDR = 3300 rpm or ωDR = 345,6 rad/s and the rated torque MDR = 0,521 Nm) and with 
the moment of the rotor inertia JM = 80 · 10-7 kgm2. 

The next form of control signal is supposed in this paper 

CECCACMC fand)tsin(EEE ⋅=+⋅⋅+= πωϕω 2 ,                     (1) 

where is selected ECM = 0 and φEC = 0. We chose two values of the amplitude ECA 1,0275 and 
0,025 for the illustration of gearbox models features.  

The controlled system is chosen as a very easy mechanical system – the static and 
dynamic balanced rotational rigid body with its moment of inertia JZ = 2 kgm2. The effects of 
the bearings are represented by the coefficient of viscous friction bZR (bZR = 2ξZ·ΩZ·JZ,            
ξZ = 0,02 – Fig 3.).  

The disturbance torque is set equal to zero (MZ = 0 Nm) in this paper. 

The gearbox is represented by the rated input speed n1R = 3630 rpm, the rated output 
torque T2R = 51,6 Nm, the (kinematics’) gear ratio iC = 90, the moment of inertia (gear input) 
JR = JT1 = 67 · 10-7 kgm2, the maximal value of the (output) torsional stiffness                     
k2max = 26,5 · 103 Nm/rad (Fig. 7) and the average efficiency of hysteresis process ηH = 0,93 
(Fig. 8) in general. The effects of the bearings on the input shaft are represented by the 
coefficient of viscous friction bMR  (bMR = 2ξM·ΩM·JMR, ξM = 0,02 – Fig 3.). The relative value 
of the torsional stiffness κ20 = k20/k2max for the model 2-DOF-L is chosen by 0,65 (Fig. 3). 

The behavior of the DC motor is described by differential equation (armature loop) 
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where mD = MD/MDR [-] is the relative value of motor driving moment MD (Fig. 2),  
τa  is the electrical (torque) time constant (τa = 0,1286 ms), 
kN is armature voltage constant (kN = 3,1169) and 

Mϕ&  is the angle frequency (speed) of motor rotor and input shaft of the gearbox [rad/s]. 

We suppose next two equations of motion in general (Fig. 2) 
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where T10 is the torque amplitude of the frictional effects of the motor bearings                            
(T01 = 0,016 Nm),  

T1 (T2) is the input (output) torque of the gearbox [Nm] and 
ϕ&  is the angle frequency (speed) of controlled system and output shaft of the gearbox [rad/s]. 
The „distortion“ of the gearbox is defined by next expression (Fig. 3, 6, 7) 
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  Fig. 2 General definition of the parameters of analyzed systems 

2. Traditional models of the gearbox  
Firstly, we start with analyze of the 2-DOF-L model (Fig. 2, 3). There are given two postulate 
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Using this postulate and equations (3a,b) we obtain after rearrangement next two 
equations of motion 
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Mechanical system has resonant (peak) frequency. Its upper estimation is given by 
undamped natural frequency fT0 (ΩT0) which is equal to 65,5 Hz. This quantity and the 
quantity of time constant τa are determined the upper limit of the numerical integration step.  

The 1-DOF-L model is based on postulate of the absolute rigidity of parts of the gearbox, 
thus 
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         Fig. 3 Definitions for parameters of the 2-DOF-L model 
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         Fig. 4 Definitions for parameters of the 1-DOF-L model 

132



 

Using this postulate and equations (3a,b) we obtain after rearrangement next equation of 
motion (Fig. 4, jRC = 36,1, βRC = 5,32, TRC = 233,4 ms) 

[ ]ZMMDDRMM
RC

M m)signkm(
T

−⋅−⋅=⋅+ ϕεϕϕ &&&&
1 ,                       (8) 

We can combine equations (2) and (8) in next step to get basic equation of the 1-DOF-L 
model ( DMMD msignkm ≅⋅− ϕ& ) 

( )[ ]ZaZMZZMRCRCMRCMRCRCM TE ετεωΩϕΩϕΩξϕ &&&&&&& ⋅+⋅−⋅⋅=⋅+⋅⋅⋅+ 222 ,         (9) 

where ΩRC = 2π·fRC   is the characteristic angular frequency (fRC = 56,6 Hz), 
ξRC         is the damping ratio (ξRC = 10,9), 
ωMRC   is the steady–state rated angular frequency of the system (ωMRC = 374,8 rad/s,ECA = 1),  
TMZ     is the time constant (TMZ = 5,17 s),  
τm0      is the electromechanical (speed) time constant of the DC motor (τm0 = 2,31 ms) and 
Tmc      is the time constant of the system (Tmc = 61,48 ms). 

The frequency response of the system, which is described by equation (8), is 
characterized by the normalized magnitude g(ω) and the phase φ(ω) 
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The cutoff frequency of this system is f-3dB ≈ 2,6 Hz (λ-3dB ≈ 0,0458) (Fig. 17, 18 ). 

3. Advanced model of the gearbox  
Our advanced 2-DOF-NL model is described by adapted equations of motion (3a,b) 
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and by expressions for torques T2 and M2B. There are time constants TMR and TZR               
(TMR = 62,36 ms, TZR = 269,4 ms) in equations (12a,b) (Fig. 2, 3, 4). 

The torque M2B is determined by loss coefficient function m2B(m2, ν1) (M2B = m2B ·T2R). 
The loss coefficient function m2B(m2, ν1) is set up by catalogue data of the specific gearbox 
(Fig. 5) as a two dimensional table. The data are relevant only for the specific type and size of 
gearboxes. 

The principle of the measurement of gearbox characteristics is shown in  Fig. 6.  The data 
of the table (Fig. 5), which describe the loss coefficient m2B(m2, ν1) function, are  taken from 
four sources (Fig. 5 – areas numerate from 1 to 4). The data from areas 1, 2 and 4 are 
measured by steady-state conditions (ω1, ω2, T1, T2 = const). 
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         Fig. 5 The plot of the gearbox loss coefficient m2B(m2, ν1) function – example 
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         Fig. 6 The principle of the measurement of gearbox characteristics  
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The data of the first area create the largest part of table or the gearbox loss coefficient   
m2B(m2, ν1) function. They are calculate from function of gearbox efficiency η(ν1, m2)       
(Fig. 4, 5). 

The data of the second area are adopted from “no load running torque” T1(ν1> 0, m2 = 0). 

The data of the fourth area aren’t presented in catalogues T1(ν1→ 0, m2 > 0) and it is a 
requisite to estimate these using the general knowledge of gearbox behavior. 

Only one value m2B(ν1 = 0, m2 = 0) lies in third area, which is a little biggest as the value 
m2Bstart = iC ·T1(t0)/T2R, where T1(t0) is the catalogue value “starting torque” T1start(ν1(t < t0) = 0 
and ν1(t ≥ t0) > 0, m2 = 0) = T1(t0). The starting torque represents the effect of frictional forces 
in the gearbox at the moment t0 when its input shaft under the act of the motor (on input,    
Fig. 6) starts to run.  

The principle of the measurement of the gearbox “torsional stiffness” is shown in   Fig. 7. 
The curve of the torsional stiffness k2(∆φ2) is approximated by usually three catalogue values 
k2i, i = 1, 2, 3 plus two catalogue values ∆φ2i, i = 1, 2 (∆φ21 = 0,6 mrad, ψ22 = 5, κ21 = 0,1,   
κ22 = 0,8, κ23 = 1,0). The basic value of the torque T2 is defined by formula 
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where (Fig. 7) 
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The final expression of torque T2 is complying with the hysteresis loop (Fig. 8) 

)t(TTT HP 222 ∆+= ,                                                         (15) 

where torque ∆T2H(t) represent the effect of the “gearbox hysteresis” 
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t0i, i = 0, 1, 2, … is the set of time points in which is fulfilled the condition 02 =)t(ϕ∆ & ,         
ηH  is the average efficiency of hysteresis process (ηH = 0,93). 

4. Simulation experiments  
There are two parts of the show of the simulations experiments outputs. The first section   
(Fig. 9 to 16) demonstrated the behavior of our advanced model 2-DOF-NL. The second part 
(Fig. 17, 18) gives short comparison of the frequency response functions generated by the 
models 1-DOF_L and 2-DOF-NL. 

There are used next parameters of control signal EC(t), which are employed in the first 
section - frequency fC = 1 Hz, amplitude ECA = 1,0275 and 0,025. Their plots are shown on   
Fig. 9 and 10 together with the corresponding relative values mD(t) of the motor driving 
torque MD.   
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         Fig. 7 The principle of the measurement of the gearbox “torsional stiffness” 
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         Fig. 8 The principle of the measurement of the gearbox “hysteresis loop”  

136



 

 
          Fig. 9 The control signals EC(t) and relative motor driving torques mD(t) plots 
 

 
         Fig. 10 Plots details of Fig. 9 
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   Fig. 11 Plots of the instantaneous angular frequency ω of the controlled system and      
               plots of the instantaneous relative value τ2 of the torque T2  
 

 
          Fig. 12 Plots details of Fig. 11 
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    Fig. 13 Plots of the instantaneous values of the loss coefficient m2B(ν1, m2) 
 

 
    Fig. 14 Plots of the normalized hysteresis loop  
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          Fig. 15 Plots of the instantaneous values of the normalized motor power p(t)  
 

 
          Fig. 16 Plots of the instantaneous gearbox efficiency η(t) 
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          Fig. 17 Frequency response – normalized magnitude plots g(f)  

 

 
          Fig. 18 Frequency response – phase plots φ(ω)  = φ(f)  
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Plots of the instantaneous angular frequency ω of the controlled system and                 
plots of the instantaneous relative value τ2 of the torque T2 (Fig. 11, 12) give information 
about the output of the gearbox. We can examine that the outputs are strong nonlinear 
distorted for ECA = 0,025, due to we had to apply the harmonic linearization method to get the 
equivalent frequency response (Fig. 17, 18). 

Plots (Fig. 13) of the instantaneous values of the loss coefficient m2B(ν1(t), m2(t)) offer the 
possibility to explain the changes in course of the instantaneous gearbox efficiency η(t)     
(Fig. 16). 

The shape of the gearbox hysteresis loop is evident from plot on Fig. 14. 
Plots (Fig. 15) of the instantaneous values of the normalized motor power p(t) give 

information about the output power of the motor. 
The most important is the instantaneous gearbox efficiency η(t) plot (Fig. 16) for 

understanding, why the traditional models  1-DOF-L and 2-DOF-L malfunctioning in many 
situations.   The basic presumption for the successful application this models in praxis is the a 
priori knowledge of the average (mean) value of gearbox efficiency ηC. As is obvious from 
plots, the value ηC depends on the amplitude ECA of control signal and in general on the time-
shape of the control signal. When is changed the level of the control signal, then changed the 
value ηC, too. It induces, that the suitable controller has to be adaptive. Without using our 
advanced 2-DOF-NL model is very difficult to create it.   

The changes of the frequency response (Fig. 17, 18) depending on the ECA greatness are 
the consequence of ηC changes.  

 

5. Conclusions  
We propose that we will analyze the interaction between the gearbox and synchronous AC 
motor to prepare conditions for the design of the adaptive controller. We will make use of 
experiments with the direction channel of the POERF. Our final goal is to take part on 
building of the full operational prototype of the direction channel of the POERF. 

We will continue to work on the matching of our advanced model for self-locked 
gearboxes.  
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