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Summary: Complex analysis of massive historical structures that takes into ac-
count all geometrical details is still not computationally feasible. Instead, ei-
ther coupled or uncoupled multi-scale homogenization analysis is often performed
whereas the latter one in particular has proved its potential when searching for a
reliable estimate of the response of large, generally three-dimensional, structures.
In such a case the macroscopic analysis is carried out independently such that the
driving material parameters of the macroscopic constitutive model are found from a
detailed numerical analysis on the mesoscale. This step constitutes the most impor-
tant part of the uncoupled multi-scale approach and its success is highly influenced
by the proper representation of the material response on the level of individual
phases, bricks and mortar. An extension of the constitutive models currently imple-
mented in the ATENA finite element code is proposed. Particular attention is paid
to the synthesis of an orthotropic damage model for the description of tensile failure
with a new constitutive model capable of representing the material failure in shear
and confining pressure. Several simple problems including tension and hydrostatic
compression are solved to test the model capability.

1 Introduction

Masonry structures are typical representatives of material systems where individual phases are
classified as quasi-brittle materials characterized by complex failure mechanisms. Such mecha-
nisms are usually promoted by evolution of nonhomogeneous local stress and strain fields. Such
an unpleasant scenario arises especially when dealing with historical masonry structures with
typical irregular distribution stone blocks, e.g. Charles Bridge in Prague (Šejnoha et al., 2005).
Although powerful homogenization tools capable of handling relatively complex geometrical ir-
regularities are now available (Zeman and Šejnoha, 2007), it is clear that a successful prediction
of the macroscopic response of such structures is highly influenced by the proper representation
of the material response on the level of individual phases, bricks and mortar.

A reliable material model with the ability of representing most of the failure mechanism, at
least on the micro level (the level of individual phases), is therefore of paramount importance
for an adequate prediction of the homogenized structural response. This subject is addressed in
this contribution on the bases of classical combination of damage and plasticity material models
employing the concept of effective stresses.
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Figure 1: (a) Dimensionless function representing the cap model, (b) Yield and plastic potential
function in the deviatoric space

2 Model definition

Since the robust commercial software ATENA has been successfully used in the modeling of
complex historical structures it appears natural to develop the theoretical formulation of the
proposed model on the grounds of existing models already implemented in this code with the
main goal of their improvements both from the modeling and implementation point of views. To
that end, two major modifications - introduction of the cap model and representation of tensile
failure through an orthotropic damage model - are introduced in the sequel.

2.1 Formulation of a yield smooth cap model for quasi-brittle materials

To begin with, recall the currently implemented representation of the shear failure in the ATENA
finite element code (Červenka et al., 2003) in the form of Menetrey-Willam yield surface

Fd(J2, σm, θ, c(κ1)) =
√
J2 + (αJ2 + σm − βc(κ1))g(θ, e)

=
√
J2 + αJ2g(θ, e)− F c

d , g(θ, e), (1)

where J2, σm, θ are the 2nd invariant of the deviatoric stress, mean effective stress and Lode
angle, respectively. The model parameters α, β, c, e and the function g(θ, e) specifying the
shape of the yield surface in the deviatoric plane are discussed in (Červenka et al., 2003) and
(Sýkora et al., 2006).

To avoid an unrealistic prediction of the material response in hydrostatic compression the
original formulation is enhanced by introducing a hardening cap, see (Schwer and Murray, 2002)
and references therein,

Fc(J2, σm, L, L(X(κ2))) =
√
J2 −

L−X

R

√
F c

c g(θ, e), (2)

where the dimensionless function F c
c , plotted in Figure 1, is provided by

F c
c (σm, L(X(κ2), R)) = 1− [σm + L] [(σm + L)− |σm + L|]

2 (X − L)2 . (3)

The hardening cap parameters L,X defining the σm range of the cap are related by

X = L+RF c
d (L) = L+R(L+ βc) ⇒ L =

X −Rβc

1 +R
, (4)



where R is an additional material parameter that determines the ellipticity of the yield cap (geo-
metrically given as the ratio of the horizontal and vertical axes of the elliptical cap). Evolution of
the cap is again assumed in the strain-hardening format with κ2 equal to the current volumetric
plastic strain εpl

v and given by Schwer and Murray (2002)

X = X0 −
1

D1

ln

(
1 +

εpl
v

W

)
, (5)

where W is the maximum plastic volumetric strain (at hydrostatic compression ‘lockup’), X0

is the initial abscissa intercept of the cap surface and D1 is a shape factor. Further note that
L represents the absolute value of the mean effective stress at the point of interception of the
two yield surfaces Fd and Fc. Only the hardening response of the material in compression is
accepted so whenever L < L0(X0) we set L = L0 and likewise for X .

To describe the cap model requires identification of four parameters. These parameters can
be obtain from a hydrostatic compressive test (X0, D1,W ) and triaxial compressive tests (R)
as offered in (Zaman et al., 1982) taking into account the coupling effect between plasticity and
damage.

Proceeding in the footsteps of Schwer and Murray (2002) the two functions, Eqs. (1) and (2)
can be combined into a smooth cap model represented by a smoothly varying (continuous
derivative) function in the form

F (J2, σm, θ, c(κ1), L(X(κ2)), R) =
√
J2 + αJ2g(θ, e)− F c

d

√
F c

c g(θ, e). (6)

Projections of the proposed yield surface into deviatoric and meridian planes appear in Fig-
ure 1(b).

Providing the material point is loaded beyond the elastic regime a fully implicit integration
scheme devised in (Sýkora et al., 2006) can be used to bring the stresses found outside the yield
surface back. The present formulation relies on a non-associated flow rule

∆εpl = ∆λ
∂G

∂σ
, G =

√
J2 + (σm − COR)MJP

√
F c

c , (7)

where G represents the plastic potential surface independent of the Lode angle θ. The parame-
ter COR is introduced to match both the yield and plastic potential surface for the current stress
state, see Fig. 1(b). Although simple the proposed plastic potential function is capable of repre-
senting both plastic dilation and compression behavior together with a critical state the material
will experience at a certain stage of loading accompanied by zero increment of the volumetric
plastic strain.

2.2 Formulation of a damage law

Quasi-brittle materials are prone to progressive loss of material integrity due to propagation and
coalescence of microcracks manifested by a degradation of material stiffness on the macroscale.
This phenomenon can be well described by continuum damage mechanics.

In this section an orthotropic damage model developed by (Papa and Taliercio, 1996) is
briefly outlined. We begin with the definition of free energy written in the principal coordi-
nate system as

ρψ =
1

2
(1− d)K0ε

2
v +Geel (I−D) eel, (8)



where εv is the volumetric strain and eel =
{
eel
1 , e

el
2 , e

el
3

}T lists the deviatoric components of
the strain vector; D is the diagonal second order damage tensor and d stands for the scalar
volumetric damage variable if loading the material in tension. Volumetric damage in compres-
sion is neglected. Finally, K0, G0 are the bulk and shear moduli of an undamaged material,
respectively. The stress-strain relation written in the principal coordinate system then reads

σ =
∂ρψ

∂εel
= (1− d)K0εv + 2G (I−D) eel, (9)

where P is an auxiliary matrix that relates the deviatoric and Cartesian strains. Differentiating
Eq. (8) with respect to the damage variables yields the damage driving forces conjugate to D
and d, respectively:

Y = −∂ρψ
∂D

= G0e
elT Ieel, y = −∂ρψ

∂d
=

1

2
K0ε

el
v

2
. (10)

In the spirit of (Mazars, 1986) the overall strain and correspondingly also the driving forces and
associated damage tensors are split into tensile and compressive parts as

eel = e+ + e−, Y = Y+ + Y−, D = D+ + D−. (11)

The evolution law for the principal values of the damage tensor follow from the consistency con-
dition in a manner much similar to classical plasticity. Here the “gauge functions” substituting
the yield function assume the forms, see (Papa and Taliercio, 1996) for original formulation,

fh
α = (1−Dh

α)(1 + Ah(Ȳ h
α − Y h

0 )Bh

)− 1 ≤ 0,

{
α = 1, 2, 3
h =“+” or h =“–”

fd = (1− d)(1 + a(ȳ − y0)
b)− 1 ≤ 0, (12)

where A+, B+, A−, B−, a ≥ 0 and b ≥ 1 are non-dimensional material parameters governing
the brittle damage evolution law. Y +

0 , Y
−
0 and y0 represent a thresholds for a non-dimensional

damage forces Ȳ = Y/E0 and ȳ = y/E0.

2.3 Identification of damage model parameters

Since rather detailed description for the evaluation of the damage model parameters A+, B+,
A−, B−, Y +

0 and Y −
0 is provided in (Papa and Taliercio, 1996), we limit our attention to the

volumetric parameters only. In particular, the model parameters a, b and y0 can be derived from
a uniaxial cyclic tensile test. The variation of nominal mean stress given by Eq. (9) depends
only on the volumetric damage parameter d. Suppose that a typical stress-strain relationship,
Figure 2(a), is available. Then, the damage force y and the damage parameter d are provided by

y(n+1) = y(n) + ∆y(n+1), d(n+1) =
SABD

SABC

, (13)

where S denotes the relevant area and ∆y a damage force increment. The unknown volumetric
parameters are subsequently computed by means of the least square method from Eq. (12).
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Figure 2: Volumetric damage parameters: (a) stress-strain diagram, (b) evolution of damage
parameter

(a) (b)

Figure 3: Hydrostatic compression test: (a) stress-strain diagram, (b) evolution of yield surface

(a) (b)

Figure 4: Tension test: (a) stress-strain diagram, (b) evolution of yield surface



3 Examples and conclusions

Two simple examples are presented for illustration. Figure 3 shows the ability of the model to
represent rather well the classical hydrostatic compression test when employing the hardening
law of the cap model. Figure 4 then displays the qualitative behavior of the plastic damage
model when running the uniaxial tension test. Clearly, since the evolution of damage parameter
(here the response is driven by the volumetric damage parameter d) is based on the elastic
strains, it is inevitable to include softening in the evolution plastic yield surfaces to arrive at
meaningful results. As evident, neither softening plasticity nor plastic damage model without
softening provides acceptable results.
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