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,One Shot Items Impact onto Systems Reliability”
D. VALIS®

Summary: This article deals with modelling and analysis tbe reliability of
complex systems that use one-shot items during dpeiration. It includes an
analysis of the impact of the reliability of usedeeshot items on the resulting
reliability of the system as a whole. Practical Apation of theoretical
knowledge is demonstrated on an example of a naddeliability of an aircraft
gun that was used for optimization of the gun’sgtreduring its development and
design. The analysed gun uses two types of onatshtd — rounds intended for
conducting of fire and special pyrotechnic carteédgdesigned for re-charging a
gun after a possible failure of the round.

1. Introduction

This contribution is supposed to contribute to &utson of dependability qualities of the
complex (in this case) weapon system as an obsetyedt. | would like to show one of the
ways how to specify a value of single dependabitigasures of a set. The aim of our paper is
to verify the suggested solution in relation to sofunctional elements which influence
fulfilment of a required function in a very sigréint manner. [1]; [3]

A weapon set is a complex mechatronics system wisidesigned and constructed for
military purposes. We are talking about a barreating gun — a fast shooting two-barrel
cannon. It is going to be implemented in militanyfarce in particular.

Generally speaking the set consists of mechanigds pelectric, power and manipulation
parts, electronic parts and ammunition. For theppse of use in our paper we are going to
deal with isolated functional blocks and ammunitionly. In this case we view the
ammunition as recommended standardised roundsyantephnic cartridges.

Single parts of the set can be described with tatele and most importantly quantitative
indices which present their quality. In my papem dealing especially with quality in terms
of dependability characteristics. We are workingtfiand foremost with probability values
which characterize single indices, and which déscriunctional range and required
functional abilities of the set. We focus on thertphandling rounds and pyrotechnic
cartridges which are crucial for this case. In orttecontinue our work it is necessary to
define all terms and specify every function.
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2. Esential Terms and Definitions
We are always talking about an object in termseabfability analyses. The definition for
object is the same as the used in IEC 60500 (191¢thsequently we need to describe the
basic object’'s measures. [2];

Object’s function:

The main function: The main function of the object is putting infiteet a fire from a gun
using standard ammunition.

The step function Manipulation with ammunition, its charging, i@ition, detection and
indication of ammunition failure during initiatiompitiation of backup system used for re-
charging of a failed cartridge.

It is expected that the object will be able to wankder different operating conditions
especially in different temperature spectra, urtlerinfluence of varied static, kinetic and
dynamic effects, in various zones of atmosphertt\a@ather conditions.

In this case we will not take into account anyha bperating conditions mentioned above.
However, their influence might be important whilensidering successful mission
completion.

One of the main terms we are going to develop is:

Mission: It is an ability to complete a regarded missignam object in specified time,
under given conditions and in a required quality.

In our contribution it is a case of cannon ability put into effect a fire in a required
amount — in a number of shot ammunition at a tangetequired time, and under given
operating and environmental conditions.

As it follows from the definition of a mission it ia case of a set of various conditions
which have to be fulfilled all at once in a waysiatisfy us completely. Our object is supposed
to be able to shoot a required amount of ammunitibith has to hit the target with required
accuracy (probability). We will not take into coderation circumstances relating to
evaluation of shooting results, weapon aiming, rimde and external ballistics, weather
conditions and others. We will focus only on arigbof an object to shoot. [4]

As we have stated above we will deal with isolatadction blocks only. We are
presuming that these blocks act according to reduand determined boundary conditions. In
order to understand functional links fully we irdtace our way of dividing an object.

We are talking about the following block:

- manipulation with ammunition, its charging, initat, failure detection and indication
during initiation, initiation of a backup systemander to recharge a failed cartridge,
all mechanical parts, all electric and electronext® interface elements with a
carrying device - Block A,

- ammunition — Block B;

- pyrotechnic cartridges — Block C.



3. Description of the Process
The process as a whole can be described this way:

From a mathematical and technical point of viewsit fulfilling of requirements” quee
which gradually comes into the service place ofhantber. The requirements” quee is a
countable rounds” chain where the rounds waitHeir tturn and are transported from the line
where they wait in to a service place (fulfilmehtaequirement) of a chamber and there they
are initiated. After the initiation the requiremest fulfilled. An empty shell (one of the
essential parts of a round) leaves a chamber takiddferent way than a complete round.
When the requirement is fulfilled, another systefmal is an integral part of a set detects
process of fulfilling the requirement. The procéssletected and indicated on the basis of
interconnected reaction processes. In this cas$ilifigl the requirement is understood as a
movement of a barrel breech going backwards. Batfllihg the requirement and its
detection are functionally connected with transpmdranother round waiting in a line to go
into a chamber.

Let's presume that rounds are placed in an amnmmiieed belt of an exactly defined
length. A maximum number of rounds which could tced in a belt is limited by the length
then. The length is given either by constructiomitiations or by tactical and technical
requirements for a weapon set. Let’'s presume thgpite different lengths of an ammunition
belt, this will be always filled with rounds frorhd beginning to the end. Let’'s also assume
that the rounds are not non-standard and are debsign the set.

The process of fulfilling the requirement is monéo all the time by another system which
is able to differentiate if it is fulfiled or notfThe fulfilment itself means that a round is
transported into a chamber, it is initiated, staotd finally an empty shell leaves a chamber
according to a required principle. If the processcompleted in a required sequence, the
system detects it as a right one.

Because of unreliability of rounds the whole sysisrmdesigned in the way to be able to
detect situations in which the requirement is mitfiifed in a demanded sequence and that is
why it is detected as faulty.

Although a round is transported into a chamber ianditiated, it is not fired. A function
which is essential for a round to leave a chambewot provided either, and therefore another
round waiting in line cannot be transported intchamber. That is the reason why fulfilling
of the requirement is not detected.

The system is designed and constructed in suchyahaait is able to detect an event like
this and takes appropriate countermeasures. A dahinsystem which has been partly
described above is initiated. After a round isiaéd and the other steps don’t carry out (non-
fire, non-movement of a barrel breech backwarda;aetection of fulfilling the requirement,
non-leaving of a chamber by an empty shell, and-tremmsport of another round into a
chamber) a system of pyrotechnic cartridges isated. It is functionally connected with all
the system providing mission completion. A pyrbta@c cartridge is initiated and owing to
this a failed round is supposed to leave a chanfbéailed functional link is established and
another round waiting in line is transported intchamber.

In order to restore the main function we use aagerhumber of backup pyrotechnic
cartridges. Our task is to find out a minimum numbich is essential for completing the
mission successfully.



4. Mathematical Model
To meet the needs of our requirements we are dgoinge a mathematical way which helps
us to express successful completing the missionkiéev that the number of roundsn an

ammunition belt is final. We also know that an avi@ailure of a roundB (ammunition block
— B) can occur with a probability. All the requirements and specifications mentioabdve
will be used in further steps.

Because it is about a stream of rounds of a numbehich wait in line to meet the
requirement, and each of them has a potential tgualia number of failed rounds has a
binomial distribution Bi) of a an event occurrence. The distribution is digec by the

parametersn and p.: Bi(n,p,). A number of occurrenceX, of an eventB follows the
distribution in Bernouli’s rown of independent experiments, and probability of é¢ven

occurrenceP(E) = pn. A number, is the same in every experiment. [5]; [6]

Because there is an occurrence of a number of £werdn observed file we are talking
about a counting distribution of an observed rand@mable. A random variable is in this
case a number of failed rounds. A probability fimttof a binomial distribution can be put
that way:

P(X, =X)=@pnx(1— p.)"; x3{0,1,2,...,n} 1)

Qualities of binomial distribution like a mean vali&E(X,) and dispersiorD(X,) are
obtained by calculating the formula:

EG) =n. 2
D(Xn) =n. m. (1- pn) ®3)

A number of failed rounds follows a binomial dibtrtion with parametens — a number of
rounds angb, — failure occurrence probability of a round.

In order to specify a mean number of possible fagun an ammunition belt of a given
length (there is a certain amount of rounds) wentjfyathe formula (2) and replaageby a
real number of rounds in an ammunition belt.

On the basis of construction, technical and tediniequirements we can have
ammunition belts of different length at a given nemt) and consequently we have a different
number of rounds. Only a maximum number of roumdsn ammunition belt is considered in
another calculation. The ammunition belt is supdagsebe of a maximum length which is
able to fit a loading device

In case a round fails initiation of a backup systenfunction restoration occurs according
to a mechanism described above. It is a case oksaive initiation of pyrotechnic cartridges
(in a system of pyrotechnic cartridges) which aupp®sed to guarantee restoring of a
required broken chain of function. A number of ggahnic cartridges in a backup system is
m. Pyrotechnic cartridges have also a probabpjtyof a failure occurrence which unables
their initiation. Pyrotechnic cartridges too areaqad in line waiting for meeting the
requirement which results from their function. lase of a failure of the first pyrotechnic
cartridge the next one is initiated up to the monvelmen either a function is restored or all
pyrotechnic cartridges are used up.

On the basis of the facts mentioned above it iSaasvthat the process of fulfilling the
requirements follows geometrical distributid@€]. It means that the process of fulfilling the



requirements repeats so often until it meets threterims of reversion of all the process to an
operational state. It is a case of an observedalscandom variable. Pyrotechnic cartridges
also have failure ratgy, (failure probability) and there is a limited numlmé them. It means
that a failure can occur up to-times A geometrical distributiorse(p,,) generally follows
this outline.

We are going to assess the succession of indepeattempts, and probability of an
observed event occurrence equals the same nymbereach attempt. The quantity,Xs a
serial number of the first success which means ahatquired event occurs. The event here

means a function of a block C, and a probabipty means an event occurrene.
Characteristics of the process are as follow. Aabdlity function:

PXx) =pr (1-pm);  xO{1,2,3,...m} 4)

It is a special case of a geometrical distributidren a probability of an event occurrence
(a pyrotechnic cartridge failure) does not dependaonumber of previous unsuccessful
attempts of a value 0. Characteristics of a geaoatdistributions, for example mean value
E(Xn) (@ mean number of pyrotechnic cartridges necedsargemoving one failed round)
and dispersio (X, are obtained by a calculation of a formula:

E(X,)=3 xPr(X, =)= (5)
x=0 1_ pm
While completing the mission during either trainioga real deployment a few scenarios
can occur, and the course of them depends on sfogkdional blocks. To complete the
mission M successfully single blocks are expectede failure free as stated above. The

function of the blocks mentioned above are desaghasA, B, G the opposite isA; B; C.
The relation can be expressed by using eventsviys

M =A n(BO C) (6)

Using probability expression we talk about probabibf mission completion M. We can
put it that way:

P(M)=P(A).[P(B) + P(C) - P(BC)] (7)

5. Description of Scenarios

Description of the scenarios which can occur dugogpleting or defaulting the mission
relate only to an ammunition block and to a redmaaechatronics system with pyrotechnic
cartridges.

The mission is completed In the first case there can be a situation whinthe
ammunition of a certain amount which is placednraenmunition belt is used up and a round
failure occurs or it is used up and a round faildwes not occur. In this case a backup system
of pyrotechnic cartridges is able to reverse aesysnhto an operational state. Using up can be
single, successive in small bursts with breaks betndifferent bursts, or it might be mass
using one burst. Shooting is failure free or thisr@ round failure occurrenae In case a
round failure occurs, a system which restores ation of pyrotechnic cartridges is initiated.
There are two scenarios too — a system restoripgr@echnic cartridges function is failure
free, or a pyrotechnic cartridge fails. If a fuoctiof pyrotechnic cartridges is applied, it can



remove a failurem-times So a number of restorations of the function is #ame as the
number of available pyrotechnic cartridges. In ortdecomplete the mission successfully we
need a higher amount of pyrotechnic cartridgesor in the worst case the number of
pyrotechnic cartridges should be equal to a nundbefrilures. Another alternative is the
situation that a round fails and in this case aofghnic cartridge fails too. A different
pyrotechnic cartridge is initiated and it restorg®e function. This must satisfy the
requirements that an amount of all round failures lower or at least equal to a number of
operational (undamaged) pyrotechnic cartridged he mission is completed in all the cases
mentioned above and when following a required le¥ekadiness of a block A.

The mission is not completedin the second case the shooting is carried outbadime,
in small bursts or in one burst, and during theosing there will ben round failures. At the
time the failure occurs a backup system for restpthe function will be initiated. Unlike the
previous situation there will ben pyrotechnic cartridges” failures and a total numbke
pyrotechnic cartridges” failures equals at leastimber of round failures, and is equal to a
number of implemented pyrotechnic cartridges Mhat most. It might happen in this case
that restoring of the function does not take place the mission is not completed at the same
time because there are not enough implementedgmymoic cartridges.

The relation of transition among the states caexXpeessed by the theory of Markov chains.

1. An alternative of a function when the mission is 2. An alternative of a

completed. function when the
mission is not
completed.

1

Figure 1 Description of transitions among the states

Characteristics of the states:

0 state An initial state of an object until a round fa#u occurs with a
probability function of a round P(B). It is alscstate an object can get
with a pyrotechnic cartridge probability P(C) inseaa round failure

occurs P(g) =1-P(B),

or P(FE) = P(C—QB)
P(B)
ms...mp State A state an object can get while completing thesion. Either a round

failure occurs in probabilityP(E)=1— P(B), or there is a pyrotechnic
cartridge failure in probabilit)P(E):l— P(C).



1 state: A state an object can get while completing the iorsdt is so called an
absorption state. Transition to the state is deedrias probability
P(E):l— P(C) of a failure of last pyrotechnic cartridge asgams an
object was in a state yk before this state, or it can be described as
probability of a round failure occurrend@(ﬁ):l— P(B) as long as an

object was in a state 0 before this state andyatitpchnic cartridges
are eliminated from the possibility to be used.
Transitions among different states as well as aibsqgbrobability might be put in the
following formulae:

P(0)=P(B) + P(C,,0)+ P(Cy,0)* -+ P(Cy, o) (8)
P(m,)=1-P(B) ©)
P(m,)=(t-P(B))+({1-P(C)) (10)
P(1)=1 (11)

We suggest the subsequent steps for all the sosnaréntioned above. Following the
mathematical formula (1) it is possible to find quobability of a number of round failures’
occurrences in an ammunition belt of a lengtRollowing the equation (2) we can specify an
expected mean value of a mean number of roundréailin an ammunition belt of a given
length.

The mean value result is recommended to be useafximum length of an ammunition
belt (a maximum number of rounds) which could bepleamented into a weapon set
concerning construction as well as tactical andhriex@l views. The result informs us of a
minimum number of pyrotechnic cartridges which dce be applied for a successful
completing the mission.

In this case there is a threat of a pyrotechnitridge failure which could cause a system
failure (as far as a number of round failures ghkr than a number of available pyrotechnic
cartridges). In this case we would not completentingsion.

In order to assess dependability of a shootingtfandt is necessary to know a number of
pyrotechnic cartridges and, depending on this, giodity of completing the mission. To fulfil
the requirements | suggest three steps:

1) To determine a required number of pyrotechnic chyés;
2) To quantify generally probabilities of completiftgetmission;
3) To quantify exactly probabilities of completing timéssion

Following the steps mentioned above we suggeshibitiod.

Ad 1) To determine a required number of pyrotecluaitridges

When we calculate a mean number of failed roug@s,) which is determined from a
maximum number of rounds in a ammunition belt (see above) and probability sound
failure occurrencep,, see the formula (2), we get a minimum recommendaaber of
pyrotechnic cartridges which are supposed to gteeanompleting the mission in case a
round fails.



The calculation would be successful in case a pglutic cartridge failure does not occur.
However, even a system of pyrotechnic cartridgeseming a failure occurrence depends on
counting distribution of a discreet random variakthich is specified in our case by a
geometrical distribution. (Because the system ivated so long until the observed and
required event occurs — in terms of repairing takufe.) We suggest calculating a mean
number of pyrotechnic cartridges” failures follogithe formula (5). For the calculation we
will need only pyrotechnic cartridge failure prolddyp p,. On the basis of this calculation we
get an average number of pyrotechnic cartridgesired to repair a failure of one round.

In order to complete the mission a number of abéléoperational) pyrotechnic cartridges
should be at least the same as a number of falaads. When we multiply the mean values
we obtain a total number of pyrotechnic cartridgesvhich will guarantee completing the
mission (even in the situation when besides faillednds there are failed pyrotechnic
cartridges t0o).

P (12)

M =EMXn) . EXm)= 1-p

Logically a number of pyrotechnic cartridges whiahe essential for completing the
mission successfully is continually proportionecatoumber of rounds and to probability of
their failure p,, and inversely proportioned to probability of pygchnic cartridge “success”
1-pn. The figure 2 shows a typical course of dependghifit(p,;pm), it means a invarianl
which depends on variablgg a p,. This way might be the first of the alternativesahto
solve the problem. It suggests a total number obteghnic cartridges which are essential for
completing the mission but it does not show the Wway to quantify probability of mission
completion.

While recording distribution parameters we are gdmuse an equivalent standing for a
valueM.

Figure 2 Course of dependability of a number of pyrotechrartridgesM on variables,
andpm

Ad 2) To quantify generally probability of complegj the mission

In this case we follow the solution which has bsated in the part Ad 1. We take into
account that there is a number of pyrotechnic ics required for completing the mission.
So, we determine amfractile which provides an upper limit of a numlo¢rounds which fail



in probability a. After we specifyf fractile which provides an upper limit of pyrotedt
cartridges which fail in probability.

While working with fractiles we follow the genenaformation. 100% fractile of a random
variableXis a numbexk,, and a probabilityp where &p<1 is denoted by

P(X %) 2p (13)
and
lim P(x)<p (14)

X~»Xp

The fractile of an observed random variable wenareking with is expressed by
p, = > P(X, =n) (15)

We put it into words this way — occurrence prohkabih of a number of events is specified
by a sum of probabilities for the occurrence ofeaénts fron0 to n.

In our case we take into account that round fadludéstribution is binomiaB=(n;p,) and
a fractile determining an upper limit of a numbé&raunds which might fail in probability
will be designated as,. We put it that way

P(X,<x,)=a (16)
We suppose that a general distribution of a pylot&c cartridge follows a binomial

distribution tooBi(m;py). A fractile providing an upper limit of a numbef pyrotechnic
cartridges which fail in probability is denoted byy, . Thus

PV, <y,)=8 (17)
The equation can be put in a different way as
Pr(m—szm—y/,):,B (18)

The following interpretation of a fractilgs is useful for other steps — at least-y, of
pyrotechnic cartridges will be available with probay S.

As it was stated before we are supposed to knowtah iumber of pyrotechnic cartridges
M which are essential for completing the missiore Téguirement is shown in the following
equation:

M-y,)=zx, (19)

The equation shows that a number of available pgtotic cartridges (we obtain it when
we subtract failed pyrotechnic cartridges from #&altamount of all applied pyrotechnic
cartridges) will be at least the same (it wouldbleéter to have a higher number) as a number
of failed rounds. If this assumption is fulfilledye can expect that the mission will be
completed in probabilitpms. Probability of completing the mission can be fattway.

Pmis= @ . B (20)



The formula can be described like this — probabitit completing the mission equals a
multiplication of probabilities; 5 £/0;1) which provide us an upper limit of failed roundslan
an upper limit of failed pyrotechnic cartridges feguired levels of fractiles.

If the level of mission completion probability iéwn in advance, e.g. it is specified by
technical requirements for a set, we can put ihenformula which is based on an assumption
that the mission will be completed in case a nundfexvailable pyrotechnic cartridges is at
least the same as rounds which are supposed .to fail

X

a

<m-vy, (21)

If it goes this way, the mission will be completedprobability expressed in the formula
(20).

If we have the valueg, n, S, pmis We may find a valuen (M) using quantitative methods.
At the end of my contribution there is an examgléhes solution.

Ad 3) To quantify exactly probabilities of complagithe mission

In the last step we are going to examine how tontiiyaan exact value of mission
completion probabilitypmis On the basis of the assumption described abov&now that
probability of completing the mission depends ohabdity of two key blocks. It is an
ammunition block (B) and a pyrotechnic cartridgégock (C). Following the last two
alternatives we might specify both a required tatahber of pyrotechnic cartridges which is
essential to complete the mission (in case all timmd are met), and a general value of
mission completion probability in case general ¢oonls are followed. This solution might
satisfy us under certain circumstances but it isahways like that. Therefore we suggest the
last way how to quantify probability of completittge mission based on more exact method.

It is necessary to define indices and quantitieschvheffect directly probability of
completing the missiopms. These are a number of roungsprobability of a round failure
occurrencep,, a number of pyrotechnic cartridges and probability of a pyrotechnic
cartridge failure occurrenga,. A general function of mission completion probapiand its
variables is put that way:

pmis(nspmm’pn) (22)

Further steps follow well known assumptions. Thecfion of a rounds” failure takes form
of a binomial distribution with parametemsandp, — Bi(n,p,), and the rounds which may fail
can be marked witkk wherek 0 {0;1;2;.....;n}. Moreover, we introduce functions of a
pyrotechnic cartridges” failur®¥ wherek {0;1;2;.....;n}. They show us possibility of a
pyrotechnic cartridge failure while shooting as rs@s it is necessary to remove a failed
round. Let us assume that a sum of functions gfratpchnic cartridges” failure will be lower
than a number of available pyrotechnic cartridgesdufor removing a failed round. We put it
in the following formula:

dDYesm=Y,+Y, +.Y, <m (23)
k=0

Following the assumption mentioned above we condige case that the first available
pyrotechnic cartridge follows geometrical distrilbat of a function of its activityGe(pn)



during the failure of thé-th round Yx. The functionp,, means probability of pyrotechnic
cartridge failure occurrence. It can be descrilsed a

Y~ Ge(pn) (24)
The equation showing probability of completing thission is put that way:

P(n,p, ,m,pm):ip(x =k)P(Y, +Y, +...+Y, <m) (25)
k=0

where in cas&=0 (it reflects a situation where there is no rouaitlife) a function would
be specified additionally provided thRa€Y1+....Yx < m)=1 And in order to solve a probability
value of completing the mission we would use sdedatompleting the formula taking
advantage of forming functions. From a mathematmaiht of view this is much more
demanding but it offers a very exact value expresgrobability of completing the mission
Pmis While using a variation of function factors. Os [asis it is easy to prove a dependability
of a total number of used pyrotechnic cartridgesadavel of mission completion probability

Pmis-

An example of a possible solution:

Given: pn = 0,000 1 - round failure probability;
n =200 - maximum rounds” number during one process;
pm = 0,01 - pyrotechnic cartridge failure probability
Pmis = 0,99 - probability of mission success.

Solution according to “Ad 1)": We are looking for saufficient number of pyrotechnic
cartridges used for removing a possible failure.

na _ 20000001
1-8 1-001
The formula shows us that having at least one pygtutic cartridge is enough to complete

the mission successfully. However, we cannot gbargrobability for completing the
mission.

M = J0,02

Solution according to “Ad 2)”: We are looking for lavel of mission completion
probability pmis as well as a required number of pyrotechnic cgas. We follow the values
described above. The solution is put in the table.

Table 1 Results of example

a Xg B =% m
a
0,991 1 0,998991 2
0,992 1 0,997984 2
0,993 1 0,996979 2
0,994 1 0,995976 2
0,995 1 0,994975 2
0,996 1 0,993976 2
0,997 1 0,992979 2
0,998 1 0,991984 2
0,999 1 0,990991 2




If we take into account this solution and startmgrginal conditions, two pyrotechnic
cartridges will be enough to complete the missiactessfully in 0,99 probability.

6. Conclusions

This contribution is supposed to serve as one @falkernatives (for other possible solution
see [7]) solving the problems connected with primgda function of an object whose function
is redundant (backed up) because its failure isomapt to complete the mission. In order to
solve the problem we chose the methods which grpased to be the most suitable for it.
Other ways are also likely to be used in ordeetch the aim but it is not the intention of this
contribution.
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