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CONSTRUCTION OF STATISTICALLY EQUIVALENT PERIODIC 
UNIT CELL OF ASPHALT MIXTURE 

R. Valenta, M. Šejnoha 

Summary:  The paper offers a novel approach to the modeling of asphalt 
mixtures. It introduces a concept of so called statistically equivalent periodic unit 
cell (SECUP) known from the analysis of random composites. Such a unit cell 
allows us to take into account a microstructure of asphalt mixture while keeping 
the computational cost of the underlying nonlinear analysis relatively low. In 
particular, the original microstructural configuration is first quantified using a 
suitable statistical descriptor (two–point probability function). Then a SEPUC is 
found such that it approximates the target microstructure as close as possible in 
terms of the selected statistical descriptor. We expect that a sufficiently 
representative number of 2D micrographs will provide the desired information for 
constructing even a fully three-dimensional periodic unit cell. At last, the classical 
first order homogenization technique will be used to extract the effective 
homogenized properties. 

1. Introduction 
The goal of our research is to develop a conceptual approach to the modeling of thermo-
mechanical response of asphalt mixtures subjected to external actions. The solution strategy 
relies on a popular uncoupled multi-scale homogenization technique taking advantage of the 
concept of statistically equivalent periodic unit cell. 

The failure of the particular pavement layers is often caused by the rapid growth of the 
transit intensity which leads to excessive pavement loading. The pavement design is 
nowadays based on the empirically gained experiences and on a number of rheological 
experiments. Up to now there is no material model of asphalt available that would take in 
account all the influencing aspects of its behavior such as heterogeneity of the material, the 
nonlinear viscoelastic behavior of bitumen, formation of microcracks, the influence of 
temperature, fatigue of material etc. 

Our topic aims at proposing a material model for the mechanical behavior of asphalt 
allowing for optimization of the asphalt structure as well as the formation of pavement layers 
in order to minimize the failure occurrence and to achieve maximal performance of the 
asphalt pavements. 
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2. General approach to modeling of asphalt mixtures 

Owing to complicated interaction of geometry, climate, loading and material 
characteristics that determine the pavement performance it is unrealistic to think that 
the mechanical response of asphalt mixtures can be captured by a single test. For this reason 
the authors of paper believe that future developments in the direction of performance based 
specifications for pavement design should aim at developing a better understanding of asphalt 
concrete response and the damage mechanism that the material exhibits. To gain such an 
understanding one needs both sophisticated tests and realistic material models. 

Asphalt is a very complex heterogeneous and time-dependent material. In general it is 
composed of bitumen matrix, aggregates and voids (see Figure 1). 

 
Figure 1 Microstructure of an asphalt mixture, RVE 

Bitumen matrices could be divided into four different groups. The first group, still widely 
used, considers a traditional bitumen matrix without any additives to adjust its behavior. The 
second group is represented by a bitumen matrix modified by polymeric admixtures, which 
allows for wider temperature diversity than the traditional bitumen matrices. The next group 
covers low-viscosity bitumen matrices, which are characterized by a good workability at 
lower temperatures and yet by keeping their mechanical properties at service temperature. The 
last group assumes a multi-graded bitumen matrix with temperature diversity extended 
similarly to the bitumen matrix modified by polymeric admixture. The asphalt mixtures are 
further divided into compacted and molted. The main difference between the two types of 
matrices is in the volume fraction of individual phases, in the mixture and in the different 
processing temperature.  

From the material behavior point of view, bitumens are viscoelastic materials and their 
behavior varies from purely viscous to wholly elastic depending upon loading time and 
temperature. We expect to treat these properties within unified model capable of describing 
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the time dependent behavior of all types of asphalt concrete. The model parameters should, 
nevertheless, be derived from simple experiments.  

Up to date tools for the design and analysis in road engineering are based on multi-scale 
modeling strategies suitable primarily for heterogeneous materials such as asphalt. 
Homogenization procedures building on the existence of periodic fields usually provide the 
stepping stone of the analysis. 

Apart from constitutive modeling the structural analysis generally requires, due to the 
above mentioned complex microstructure, analysis on various scales. The computational cost 
of a fully coupled micro-macro simulation is still, however, relatively high. A significant 
reduction of the computational cost is fortunately available, particularly if restricting the 
attention to a fully uncoupled analysis. In this context, response of the representative volume 
element (RVE) (the sample of a material large enough to reflect statistical fluctuations on the 
level of observation when subject to a given macroscopic loading path) is of the main interest, 
see Figure 1. Clearly, such an approach leads to a substantial loss of data when compared with 
the coupled analysis when individual scales interact with each other and no close-form 
constitutive relation is needed on the macro-level. If, on the other hand, a macroscopic 
constitutive law is postulated on the macro-scale, the uncoupled approach allows for 
providing inputs for the model by a pure simulation without a need for expansive laboratory 
experiments on complex asphalt structures. 

Even the highly simplified fully uncoupled approach depends, however, on an existence of 
the RVE. The approach essentially relies on the description of microstructure statistics 
[Zeman – Šejnoha, 2006]. In particular, the original microstructural configuration is first 
quantified using suitable statistical descriptors (two – point probability function) and then a 
statistically equivalent periodic unit cell (SEPUC) is found such that it approximates the 
target microstructure as close as possible in terms of this descriptor. 

Following the formulation of SEPUC the attention will turn to the application of well 
established homogenization technique based on periodic fields [Michel – Moulinec – Suquet, 
1999] to derive the effective macroscopic parameters of the composite.  

The idea of using totally uncoupled multi-scale procedure stems from the expected 
possibility of describing the behavior of both the bitumen matrix and homogenized asphalt 
mixture using the same material model – the generalized nonlinear viscoelastic Leonov model   
(see [Tervoort, 1996], [Šejnoha – Valenta – Zeman, 2004] extended for the influence of 
temperature and the value of mean stress. In addition, introducing a damage parameter will 
allow for the model to keep track of a gradual loss of material integrity when exceeding the 
tensile strength.   

Finally, clearly visible excessive deformation patterns of pavements inevitably call for an 
implementation of the proposed constitutive model in a large strain setting. 

 

3. Basic statistical descriptors 

To reflect a random character of heterogeneous media it is convenient to introduce the 
concept of an ensemble – the collection of a large number of systems which are different in 
their microscopical details but identical in their macroscopic details. In the context of 
quantification of the microstructure morphology, an ensemble represents the collection of 



 

material micrographs taken from different samples of the material. To describe a random 
microstructure we introduce a characteristic function χr(x, α), which is equal to one when 
point x lies in the phase r within the sample α and equal to zero otherwise 
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The symbol Dr(α) denotes here the domain occupied by r-th phase in the sample α. For a two-
phase asphalt, r = s, b, characteristic functions χs(x, α) and χb(x, α) are related by 

( ) ( ) 1=+ αχαχ bs x,x, .         (2) 

With the aid of function χr, the general n-point probability function Sr1,...,rn is given by 
[Beran, 1968] 

 ( ) ( ) ( )αχαχxxS nnnrr n ,x,x rr ,,,, 11,, 11 KKK = .      (3) 

Thus, Sr1,. . . ,rn gives the probability of finding n points x1; . . . ; xn randomly thrown into the 
media located in the phases r1; . . . ; rn. We limit our attention to functions of the order of one 
and two. 

Analysis of random composites usually relies on various statistical assumptions such as 
ergodic hypothesis, spatial homogeneity or isotropy, which may simplify the computational 
effort to a great extent. In particular, the ergodic hypothesis demands all states available to an 
ensemble of the systems to be available to every member of the system in the ensemble as 
well [Beran, 1968]. Then, the spatial or volume average of function χr(x, α) given by 
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is independent of α and identical to the ensemble average, 

( ) ( ) rr cχSχ === xx rr ,        (5) 

where cr is the volume fraction of the r-th phase. Note that the above assumption is usually 
accepted as a hypothesis subject to experimental verification. The statistical homogeneity 
assumption means that value of the ensemble average is independent of the position of 
coordinate system origin. Then, for example, the two-point stone probability function reads 

 ( ) ( )1221 , xxx ssss SS = ,         (6) 

where xij = xj - xi. In the context of a representative volume element (RVE: a material element 
which effectively samples all microstructural configurations) the one-point probability 
function Sr and the two-point probability function Srs are the same in any RVE (a micrograph 
of the material sample) irrespective of its position. Thus only one such sample is needed for 
their evaluation. When constructing the RVE we add an additional requirement with respect 
to its minimum size. Apart from the above statement we shall require the size of the RVE to 
be at least such that there exist two points within the RVE which are statistically independent. 
Then, it appears acceptable to consider a periodicity of the selected RVE. This becomes 
particularly important when developing an efficient procedure for evaluation of Sr and Srs. 
Note that for an ergodic and periodic microstructure the two-point probability function Srs 
receives the following form 
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where Ω is the size of the RVE (the micrograph area). It is worthwhile to mention that only 
the Fourier transform of function Srs given by 

( ) ( ) ( )ξξξ srrs χχS ~~1~
Ω

= ,        (8) 

is needed. Note that .  now stands for the complex conjugate. When introducing a binary 
image of the actual microstructure may evaluate the last equation very efficiently employing 
the discrete Fourier transform. 

 

  
a) Color image of original microstructure b) Binary image of original microstructure 

  
c) Boundary of stones d) Digitalized bitmap 

Figure 2 Bitmap preparation 
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4. Modification of original sample image 

A sample image of real microstructure in Figure 2a was cut out from a large image of 
asphalt specimen (see Figure 1). The saved image has resolution 1600x1600 pixels. In the 
first step the real microstructure is replaced by its binary (monochromatic) image. Input color 
image was modified in freeware graphical software GIMP 2. We created binary image based 
on tresholding of input color images by means of GIMP program. The tresholding works as 
setting a range of color scales or intensity and saturation (depends, whether the RGB or HIS 
representation of image is used), for which the output binary image should be black (or 
white). A binary version of real microstructure is shown in Figure 2b. Such a digitized 
micrograph can be imagined as a discretization of the characteristic function χs(x, α), usually 
presented in terms of a W × H bitmap. 

 

  
a) Binary image after eliminating stone 

fragments smaller than 150 pixels  
b) Binary image after eliminating stone 

fragments smaller than 300 pixels 

  
c) Binary image after eliminating stone 

fragments smaller than 600 pixels 
d) Binary image after eliminating stone 

fragments smaller than 1200 pixels 

Figure 3 Examples of binary images of original microstructure 



 

A sophisticated computational tool for the elimination of small stone fragments that are 
expected to have negligible effect on the homogenized material parameters was developed. 
This routine determines the boundary of each stone (Figure 2c) and the area in pixels of all 
stone fragments. The resulting digitalized smoothed bitmap of the original color image is 
depicted in Figure 2d, where local defects within individual stone fragments were filled and 
the stones were separated from each other as much as possible. Several examples of the 
modified original image after eliminating a respective number of stones depending on their 
size appear in Figure 3.  

These images can be related to the Cumulative distribution function of the number of 
stones linked to a given area plotted in Figures 4 and 5. While Figure 4 shows the entire 
spectrum, Figure 5 displays only a zoom into a smaller area. Figure 5 in particular suggests 
the presence of large fraction (from their number point of view) of small stones. From their 
volume fraction point of view this huge amount of small stones is, however, negligible. This 
is evident both from Figure 6 and even more from Figure 7. 
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Figure 4 Cumulative distribution function 
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Figure 5 Cumulative distribution function – detail 
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Figure 6 Cumulative distribution function of volume fraction 



 

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

0 200 400 600 800 1000

Stone area A [pixels]

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n 

of
 v

ol
um

e 
fr

ac
tio

n
P A

 
Figure 7 Cumulative distribution function of volume fraction - detail 

 

5. Evaluation of two-point probability function 

In preparation for the search for the desired statistically equivalent periodic unit cell it is 
necessary to evaluate the variation of the two-point probability function, which will serve as a 
measure of similarity of real microstructure (Figure 3) and a respective periodic unit cell.  

With reference to [Šejnoha – Valenta – Zeman, 2004] the two-point probability function is 
evaluated with the help of Fast Fourier Transform applying directly to a selected binary image 
plotted in Figure 3. The resulting function for stones under assumption of statistical 
homogeneity Eq. (7) and (8) appears in Figure 8.  

Providing we accept this function to be invariant with respect to rotation we may replace 
the statistically homogeneous function by its isotropic format derived by averaging the 
original function in Figure 8 through all possible angles. The corresponding results obtained 
for individual micrographs in Figure 3 are displayed in Figure 9. These functions in particular 
are scaled with respect to the corresponding volume fraction; recall Eq. (6) giving its value 
equal to one if the relative distance of two points is reduced to zero. On the other hand, when 
the two points are spread far apart the event of throwing simultaneously two points randomly 
into a medium becomes equivalent to throwing the two points into the medium independently, 
i.e. Sss(x) → cs

2. Therefore, the sample size should be sufficiently large to comply with this 
property. This requirement was certainly fulfilled for the present sample. As also evident from 
the curves in Figure 9, the probability of finding two points both in stones is reduced for the 
same distance due to removal of stones from the original microstructure. Just the opposite is 
true for the bitumen phase. 



 

 
Figure 8 Two-point probability function for binary image Aelim = 300px 

 
Figure 9 Average two-point probability functions normalized by stone volume fraction cr 



 

6. Conclusion and future work 

This paper presents a summary of the preliminary work on asphalt mixtures. It 
concentrates on morphological description of actual microstructure. To that end, the two-point 
probability function is used to provide information about material statistics. The effect of 
elimination of stones with relatively small size is studied. While the total number of stones 
eliminated is relatively high their volume fraction when compared to the total volume of 
stones is negligible. Nevertheless, the effect of elimination becomes pronounced when 
considering the two-point probability function as shown in Figure 9. Since this function is 
assumed to govern the search for an equivalent periodic unit cell, it can be expected that 
keeping the original microstructure intact will be important, particularly from the effective 
properties point of view. This, however, is the subject of present research and must be yet 
confirmed. 
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