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Summary: The paper deals with the development of biomechanical model in 
order to simulate a man walking over the elastic bridge and the interaction of 
both objects. The current civil engineering technology enables to build bridges 
perfectly sustainable from mechanical point of view but with decreased 
eigenfrequencies that may lead bad human perception like anxiety or even 
seasickness. Therefore it is desirable to develop simulation models of the man-
bridge interaction to be considered in the bridge design. This paper deals with the 
development of interaction model. The model must include the biomechanical 
model of human being, its control of human gait, the elastic bridge and the 
interaction between the biomechanical model and the bridge. The developed 
model is a planar one and it enables to simulate both the stable and unstable 
human gait. 

 
1. Introduction 

The current improved technology of civil engineering can build bridges for human beings that 
satisfy all mechanical objectives of strength, reliability and lifetime, but with decreased 
amount of material. The consequence is the cost saving but also the decreased 
eigenfrequencies that result into the danger of bad human perception like anxiety or even 
seasickness. An example of such problems was the story of the Millenium Bridge in London. 

In order to improve the design of such elastic bridges the phenomena of the man-bridge 
interaction is to be considered. Based on that this paper describes the development of the 
suitable biomechanical model for the human gait and the corresponding suitable bridge model 
for the interaction. The suitable model is a complex mechatronical model. The model must 
include the biomechanical model of human being, its control of human gait, the elastic bridge 
and the interaction between the biomechanical model and the bridge. 
 
2. Biomechanical model of human gait 

The human being is modeled by the planar biomechanical multibody model [2] in the Fig. 1. 
The concept of this model has been taken from [1]. The model consists of 8 bodies including 
the frame and it has 9 DOFs. The multibody model is described by 21 physical coordinates 
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that describes the position of the centers of mass of particular bodies and the orientation of the 
local coordinate systems firmly attached to each body at the center of mass [2, 3]. These 
physical coordinates are constrained by the kinematical constraints describing the connection 
of bodies in the revolute joints. If the revolute joint A that connects the body i and j with the 
coordinates ],[],,[ jAjAiAiA yxyx  of the center A of revolute joint in the local coordinate 

systems then there are two constraints  
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Fig. 1 The planar biomechanical model of human being 

 
There altogether 6x2=12 such constraints [2]. The resulting equations of motion are the 
Lagrange equations of mixed type [3] 
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where Ek is the kinetic energy, Qj are the generalized forces, λk are the Lagrange multipliers 
corresponding to the constraints fk (2). The generalized forces are derived from the acting 
forces. It is considered that there are the acting forces of the gravity, the control torques in the 
joints that correspond to the human muscles driving the human joints (Fig. 2) and the forces 
of the interaction with the foundation (Fig. 3). The interaction forces Rxl, Ryl with the 



foundation (Fig. 3) are equivalent to the resulting moments Mrl. The vertical forces Ryl are 
computed from the substitutive model of the interaction with the foundation by the unilateral 
springs and dampers (Fig. 3) 
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where k and b are the substitutive stiffness and damping coefficient of the contact with the 
foundation and lrely , are the relative coordinates in the contact. The horizontal forces Rxl are 

computed as the friction forces  
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where µ is the Coulomb friction coefficient and lrelx ,&  are the relative slip velocities in the 

contact. In order to avoid the limit cycle around the equilibrium another friction model is 
introduced for very small relative slip velocities  
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where g is a suitable gain [2]. 

 
 

 
Fig. 2 The gravity and control torques acting on the planar biomechanical model 

 
 
For the control synthesis the equations of motion (3) are transformed into the independent 
ones. The independent coordinates are selected out of the dependent ones (1). They consist of 
the description of the position of the human torso 222 ,, ϕyx and the relative coordinates in the 

joints ψi (Fig. 4). There are 9 independent coordinates 
Tyx ],,,,,,,,[ 654321222 ψψψψψψϕ=q                                         (7) 

 



  
 

Fig. 3 The model of the interaction with the foundation 
 
The dependent coordinates s in (1) can be expressed as the function of the independent ones q 
from (7), i.e. there is an inverse kinematical function 
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and by the time differentiation of (8) it is derived 
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Then the resulting independent equations of motion are [3] 
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where M  is the mass matrix derived from the equation (3). 

 
Fig. 4 The independent coordinates of the planar biomechanical model  

 



 
 

Fig. 5 The description of one periodic footstep as the spline function of the time  
 

The fundamental problem is the way how to determine the necessary control torques ui, 
i=1,…, 6 from Fig. 2. They are determined from the inverse dynamical solution of the 
equations of motion (10) in order to realize the periodic human footstep [1, 2]. The suitable 
time behaviours of the independent coordinates ψi are described as the spline functions of the 
time in the form (Fig. 5) 
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Finally the behaviour of the model is parametrized by the supporting points Bmi (Fig. 5).  

 

 
Fig. 6 The variables for the optimization performance index 

 
The initial values of the supporting points Bmi have been determined after many attempts 
based on the observation of real human gait. Such footstep was kinematically acceptable but it 
has many drawbacks from the point of view of kinematics and dynamics. From the point of 



view of kinematics it has especially suffered from the not fully satisfied periodicity of the 
human footstep and from the point of view of dynamics it has especially suffered from the 
excessive swinging of the human torso during the footstep. The final plan for the human 
footstep has been determined by the optimization of the supporting points Bmi in order to 
minimize the objective performance index [2] (see Fig. 6) 
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with suitable gain coefficient c. 

The optimization has been performed by the genetic optimization using [4]. The 
optimization process is depicted in the Fig. 7. During the design process of the footstep two 
versions of human gait have been determined. One is the gait by putting one’s leg together 
and the other one is without putting one’s leg together. There are many solutions of the 
problem of footstep design that corresponds to the individuality of the human gait. An 
example of resulting successful gait is in Fig. 11. 

 

 
Fig. 7 The optimization of one periodic footstep by the change of supporting points 

 
The derived human gait can operate only within static environment (foundation). The human 
being can adjust his behaviour according to the unexpected deviation in the environment 
(foundation). It is realized by the feedback balancing by the control torques in the joints. This 
has been considered by the introduction of PD feedback law 
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with suitable gains ki1, ki2 where ψi,des are the desired preplanned footstep time functions from 
Fig. 5 and Fig. 7. 
 



3. Model of an elastic bridge 

The elastic bridge has been considered based on the structure in Fig. 8 where a is the length of 
the footstep in order to simplify the computation of the interaction forces. The particular 
members of the structure have been modeled as beam elements possessing both axial and 
bending deformations. The resulting dynamical structural model of the elastic bridge has been 
derived using FEM approach 
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where w is the vector of nodal coordinates of the FEM model, M s, Bs, K s are the mass, 
damping and stiffness matrices of the structure in Fig. 8 and F is the vector of interaction 
forces between the elastic bridge and the walking man. The bridge structure has been chosen 
with a=0.55m and the first eigenfrequency about 10Hz. 

 

 
Fig. 8 The model of an elastic bridge 

 
4. Simulation experiments of the interaction 

Using the previous models the overall model of the man-bridge interaction has been 
assembled (Fig. 9). Many different computational experiments have been conducted.  
 

 
 

Fig. 9 The overall model of the man-bridge interaction 
 



 

 

 
 

Fig. 10 The human gait with putting one’s leg together on the elastic bridge 
 



First, the human gait with putting one’s leg together on the elastic bridge is on Fig. 10. 
Second, the human gait without putting one’s leg together on the elastic bridge is on Fig. 11. 
Third, the difference between the behaviour of the human gait on the firm foundation and on 
the elastic bridge has been investigated.  The result is in Fig. 12. Finally, the influence of the 
stiffness of the elastic bridge on the stability of the human gait has been investigated. The 
increased compliance of the bridge can destabilized the human gait despite the stabilizing 
feedback control law (13). This is demonstrated in Fig. 13 and Fig. 14. 
 

 
Fig. 11 The human gait without putting one’s leg together on the elastic bridge 

 

 
 

Fig. 12 The influence of the bridge elasticity on the human gait (y position of human torso) 



 

 
Fig. 13 The destabilization of the human gait by the increase of the bridge compliance 

 

 
Fig. 14 The comparison of stable and unstable human gait due to the bridge compliance 



5. Conclusions 

The model of the man-bridge interaction including the bridge compliance has been developed. 
It enables to investigate many different phenomena starting with the different human gaits, 
different stabilizing feedback laws and ending with the influence of bridge design on the 
human perception.  
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