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Summary: The contribution deals with the modelling of the rolling contact be-
tween the wheel set of the railway vehicle and the curved railway and subse-
quently with the lateral motion of the wheel set on this railway. The motion is 
separate into kinematic motion and dynamic motion. Results of the numerical so-
lution of both motions are compared with results of the wheel set motion on  the 
straight railway which was solved in submission at this conference in the last 
year. 

1. Introduction 
The preliminary analysis of rolling contact between the wheel of the railway vehicle and rail 
and origin the forces that develop in the contact patch was solved in work Švígler & Vimmr 
(2006) where the rise and determination of creep forces was discussed. The solution of rolling 
contact is based on Kalker’s linear theory (Kalker J. J., 1979; Garg V. K. & Dukkipati R. V., 
1984) which suggests (De Pater A. D., 1962) that for very small creepages γi, i = 1, 2, 3 (Šví-
gler & Vimmr, 2006), the area of slip in the contact patch is so small that its influence can be 
neglected. Then the contact patch can be considered as closed adhesion zone and therefore it 
is possible the contact between wheel and rail interprets as contact at point. For expression of 
forces it is considered contact patch which is substituted by area of ellipse. After then the con-
tact simplificates into geometric contact without mutual penetration of both bodies. On this 
condition can be assumed that the generating force is determined by Hooke’s law. Kalker 
(Kalker J. J., 1979) has shown that the linear creep forces depend on creepages in accordance 
with relation 

 creep =F Kg , (1) 

where Fcreep is vector of creep force effects at contact point, K is a square matrix of Kalker’s 
linear coefficients and g is a vector of creepage coefficients. After expressing of this matrices 
and their substituting into Eq. (1) we obtain 
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where Tx, Ty are longitudinal and lateral creep forces and Mz is spin-creep moment (Švígler & 
Vimmr, 2006). Cij are creepage and spin coeeficients which depend on Poisson’s material 
constant σ of wheel and rail and on the ratio of the semiaxes of the contact ellipse. Semiaxes a 
and b in longitudinal and lateral direction are depended on radius of curvature of wheel and 
rail (Švígler & Vimmr, 2006). The coefficients Cij are given in a discrete form (Garg & Duk-
kipati, 1984) and G is shear modulus of rigidity which depends on shear moduluses of rigidity 
of wheel and rail. The Eq. (1) can be simplified into form 
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where fij are the linear creep coefficients. Creep forces are modified by Johnson and Ver-
meulen theory (Iwnicki, 2003) for reason of creep force linearization because tangential force 
size can not overpass value fN. The discrete form of coefficients Cij and auxiliary coefficients 
ma, mb for determination of semiaxes a, b of contact ellipse were approximated (Siegl & 
Švígler, 2006) by spline functions, Fig. 1. 

 

Fig. 1 Continuous functions ma, mb, Cij (redly) and discrete values (black points) 



2. Simulation of kinematic wheel set motion on curved railway 
For the simulation of kinematic wheel set lateral motion on curved railway, Fig 2, the results 
of moving of the same one in straight railway which was obtained formerly (Švígler & 
Vimmr, 2006) can be used. 

 

Fig. 2 Free wheel set motion on the curved railway 

It is only necessary put into moving equations for the straight railway instead of the deviation 
y its extended, Fig. 2, relation 

 
1D O Dy y y yΩ− ≡ − ≈ − + . (4) 

After then it is possible for the radius of curvature of railway central line to write expression 
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where 
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1Oy  is coordinate of origin O1 
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rolling radius and yD in Eq. (4) determines wheel set lateral moving. Because DR y≫  it is as-

sumed that coordinate of wheel set centre ΩD, with respect to origin O1, in direction of axis y 
is approximately the same, Fig. 2, as lateral moving yD. 
 
 

 

Fig. 3 Determination of coordinates 

 

Using of Euclid’s theorem (Švejnoch a kolektiv, 1991) we can, Fig. 3, near the origin Ω of 
space ( ),  ,  R ≡ i j k , obtain, with plausible approximation, relation between 

1Oy  and 
1Ox  
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After inserting into Eq. (5) and with the substitution 
D

x xΩ = , 
D

y yΩ = , for better lucidity for 

next solution, we get 
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λΩ =  is length frequency. Complete solution of Eq. (7), that determines lateral 

motion of wheel set in space R, Fig. 4, is 
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where ( )
0 0y y= , ( )

0 0y y′ ′=  are initial conditions. It is evident to see that frequency of oscil-

lating motion is the same as for the straight railway and the amplitude depends on the curvatu-
re radius R of railway central line. 
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Fig. 4 Space arrangement of coordinate spaces 

The particular solution of Eq. (8) expresses static displacement of the wheel set on arc so that 
the wheel set, according with Eq. (8), oscilates in lateral direction around the equidistant line 
to the railway central line, distance ∆, that is dislocated face out from arc. Lateral motion in 
space R1 is given with relation 
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where 
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∆ =

Ω
 and x = vt, v is velocity of forward movement of wheel set centre ΩD. The 

lateral motion was considered as motion with one degree of freedom, i.e. the swaying motion 
around axis xD was not accepted. Rotary motion ψɺ  arround axis zD can be expressed by time 
differentiation of y = x(t) because 
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The comparison of wheel set lateral oscillation on the straight and curved, R = 500 m, railway 
for the same entry conditions is demonstrated in Fig. 5. 
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Fig. 5 Comparison of wheel set oscillation on direct and curved railway 
 for R = 500 m, v = 50 km/h, yD0 = 0,003 m 

The lateral oscillation of wheel set on the curved railway, depending on radius of the railway 
arc, is shown in Fig. 6. Fig. 7 demonstrates influence of initial quantity of the lateral dis-
placement yD0 on the vibration amplitude y. 

 

Fig. 6 Lateral motion on curved railway depending on time t and radius R for yD0 = 0,003 [m] 
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Fig. 7 Dependence ( )0,D D Dy y t y=  for R = 2000 m 

On the basis of obtained results can be sad that lateral harmonic motion of the nonmaterial 
wheel set is caused by wheel conicity. The increasing of wheel conicity decreases the wave 
length of the harmonic motion. 

3. Simulation of dynamic motion of wheel set on curved railway 

3.1. Kinematic relations 
For the determination of the force effect, Eq. (1), it is necessary firstly to define kinematic re-
lations at contact points between wheel and railway. Subsequently creepage coefficients are 
determined for the curved railway. Wheel velocities at contact points are the same for the 
curved railway as for the straight railway (Švígler & Vimmr, 2006), but rail velocities, that 
are used by change of motions of wheel and rail, are different, Fig. 8. Virtual velocities of left 
and right wheels are given with expressions 
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where v = rwω is the peripheral velocity of wheels in their pitch planes. 
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Fig. 8 Longitudinal velocities at curved railway 

Using relations for creepage coefficients for the longitudinal (γ1), lateral (γ2) and spin (γ3) mo-
tions (Švígler & Vimmr, 2006) in case of wheel set moving on the streight railway it is possi-
ble creepage coefficients for curved railway to express as follows 
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where index L or R indicates left or right wheel. 

3.2. Dynamic motion 
Dynamic motion is considered as motion with two degrees of freedom which is described 
with equations 
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First of this equations contains centrifugal force mv2/R and gravitational stiffness force 
2Nλy/l0 (Iwnicki, 2003) which is caused by total vertical load acting on wheel set. 

3.3. Numerical solution 
Using transformation of two second-order differential equations (14) and (15) into four first-
order differential equations the numerical model in software MATLAB, that enables to simu-
late and to analyse motion of wheel set over railway, was created. Numerical solution was 
made for following entry parameters: 
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v = 50 [km/h], R = 300 [m], ( )arctan 1/ 20 2,86λ = °≐ , R1 = ∞ [m], R1´ = 0,3 [m], rw = 0,4575 
[m], rw´ = 100 [m], l0 = 0,750 [m], σ1 = σ2 = 0,25 [–], E1 = E2 = 2,1·1011 [Pa], m = 1022 [kg],  
Iz = 678 [kg m2], f = 0,2 [–], N = 20000 [N], 
where R1 is radius of curvature of rail in longitudinal section, R1´ is radius of curvature of rail 
in cross section and rw is radius of curvature of wheel in longitudinal section. 
As initial values were used: 

0Dy  = 0,003 [m], 0Dyɺ = 0 [ms-1], ψ0 = 0 [rad], ( )0

rad
0  

s
ψ ψ  =   
ɺ ɺ . 

Obtained results of the wheel set lateral motion on the curved railway are demonstrated in 
Fig. 9 – 13. 
 

 

Fig. 9 Lateral motion of wheel set on curved railway 

 

Fig. 10 Rotary motion angle ψ of wheel set on curved railway 

 

Fig. 11 Longitudinal creep force of wheel set on curved railway 
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Fig. 12 Lateral creep force of wheel set on curved railway 

 

Fig. 13 Spin creep moment of wheel set on curved railway 

4. Conclusion 
The elementary kinematic analysis of the rolling contact between the wheel of railway vehi-
cles and the curved railway and consequently the determination of creep forces at contact 
points was made. On the basis of kinematic analysis the harmonic motion of the nonmaterial 
wheel set on curved railway was solved. With use of determined creep forces and spin mo-
ment the motion of the material rigide wheel set on curved railway was analysed. Both mo-
tions, kinematics and dynamics, was solved numericaly for the same entry parameters. Dy-
namics motion of the material wheel set is for velocity 50 km/h in unsteady state. Submitted 
paper links to analyse of motion of the wheel set on the straight railway. Obtained results cre-
ate base for the appropriate analysis of motion of couple of wheel set that create a bogie of 
railway vehicle. 
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