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Summary: The contribution discusses possible approach for the formulation of 
fracture criteria for the general stress concentrators – especially a surface crack 
terminating at the interface of two dissimilar orthotropic media. The classical 
differential analysis is unsuitable due to the discontinuity in the elastic properties 
which leads on the interface to a zero or infinite energy release rates. Theory of 
the Finite Fracture Mechanic is used to overcome this problem (crack increase of 
finite length is used instead of the infinitesimal one). The three possibilities of the 
crack propagation are taken into the consideration – crack deflection (single or 
double) and a penetration of the crack across the interface into the substrate. The 
so-called matched asymptotic procedure in combination with FEM is used for the 
calculation of appropriate changes of potential energy caused by the fracture. 

 

1. Introduction 
The increasing use of the fibre-reinforced composites in a high performance structures has 
brought a renewed interest in the analysis of the cracks in anisotropic materials. Most 
matrices of the advanced composite material are brittle. They prone to cracking under very 
low applied stresses and failure frequently occur in the form of multiple matrix cracking. The 
orientations of these cracks may vary depending on the relative position of the reinforcement 
in relation to the load. The stress field in the neighbourhood of crack is governed by the 
overall anisotropic material response. The existence of material interfaces in composites, 
especially in laminates, brings other problems in the analysis of cracks – the problem of crack 
terminating at the interface of two anisotropic solids and the problem of interfacial crack in 
anisotropic solids. These problems are also encountered in the technology of protective 
coatings. It is also well established that the increase of the toughness of ceramics laminates or 
ceramic-matrix composites can be achieved by introducing weak interfaces between layers or 
between the fibre and the matrix. Deflection along the interface then results in a crack 
blunting and this effect increases the required energy for the next crack propagation. 
Understanding the mechanism of the crack deflection along the interface is thus essential to 
determine for example the suitable interlayer and the optimum interface toughness which are 
necessary to favour this phenomenon. The capability of an interface to deflect a crack is 
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usually analyzed in terms of the competition between deflection and penetration for a 
stationary crack terminating at the interface at a normal or an oblique angle – e.g. Hutchinson 
(1994),  Leguillon et al. (2000) and Martin et al. (2001).  

The discontinuity in the elastic properties at the interface strongly influences the behaviour 
of the energy release rate of the crack in the vicinity of the interface. In the case of a strong 
singularity (crack lies in a stiffer material and a characteristic eigenvalue δ<1/2), the energy 
release rates Gp(lp=0), Gd(ld=0) for a crack terminating at the interface are infinite and 
interface penetration or deflection is thus possible at any finite load level. In contrast, the 
presence of a weak singularity (crack lies in a softer material and δ>1/2) implies that the 
energy release rates Gp(lp=0), Gd(ld=0) for a crack terminating at the interface are zero and 
interface penetration or deflection is not predicted for any applied load. This is a drawback of 
the classical differential theory which may be overcome with the help of the so-called Finite 
Fracture Mechanics, where the crack increment of a finite length is used instead of the 
infinitesimal one. The analysis is performed within the framework of two dimensional linear 
elasticity. Matched asymptotic analysis (Leguillon (2002)) is used to derive the change in 
potential energy induced by a crack growth of some finite increment. Afterwards the 
competition between the deflection of the main crack along the interface and the penetration 
into the substrate can be assessed. 

 

2. Problem formulation 
Let consider a crack lying in a thin orthotropic layer, perpendicular to the interface with an 

orthotropic substrate. The main goal is to work up a technique applicable for the assessment 
of the fracture-mechanics behaviour of such a general stress concentrator under the given 
loading conditions. The following Figure 1. shows three possibilities of the crack propagation 
which will be considered. The crack will either penetrate into the material M1 (Fig. 1b) or 
will be deflected along the interface (singly or doubly – Fig. 1c,d) - Martinez & Gupta (1994),  
Martin et al. (2001). 

 

 

 
 
 
 
 
 
 
 
                                               

Fig. 1  a) Main crack terminating at the interface of two dissimilar materials; b) crack 
penetrating into the material M1; c) singly deflected crack; d) doubly deflected crack.  
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3. Matched asymptotic analysis 
A matched asymptotic analysis (e.g. Leguillon (2002)) is used to evaluate the energy 

balance when the crack propagates in the vicinicity of the interface.  As shown in the Figure 
1, different geometries are considered (single, double deflection along the interface and the 
penetration into the material M1). In order to keep a validity of the asymptotic analysis, the 
condition of  ld, lp → 0 must hold. It means that a ratio of  l/L <<1 (see Fig. 2). It is worthy of 
note that he asymptotic assumptions of the small crack extensions imply that the constant 
loading conditions have no influence on the energy balance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2  a) Outer and Inner domain used in the matched asymptotic analysis (in case of the 
singly deflected crack). b) – d) coordinate systems of outer and inner domain 

 

In the plane linear elasticity, we consider a domain in which the main crack is increased by 
some small increment l (lp or ld) – Fig1. The dimensionless length of this increment is denoted 
as ε. The solution Uε(x1,x2) to an elasticity problem in this domain can be expressed as the 
unperturbed (without crack increment) solution U0(x1,x2) defined on the outer domain Ω0 plus 
a small correction - Leguillon (2002): 
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where function f1(ε) → 0 as ε → 0.  Such an expansion (1) is a so-called outer expansion and 
is valid in the whole domain Ω0 (or Ωε) except near the point where the geometry is perturbed 
by the crack increment. The solution U0(x1,x2) is singular at the tip of the main crack and can 
be expanded as: 

(2) 

In order to obtain a description of the near tip fields, the domain Ωε is stretched × 1/ε and 
as ε→0 it leads to the unbounded „inner“ domain Ωin described by the stretched variables y1= 
x1/ ε  and  y2= x2/ ε. The size of the crack increment is now equal to 1. The solution can be 
expanded in this domain as: 

(3) 

where F1(ε ) / F0(ε)→0 as ε→0. It is the „inner“ expansion. Conditions at infinity are missing 
to define well-posed problems for the unknown functions V0(y1,y2) and V1(y1,y2). They 
derive from the matching conditions based on the existence of an intermediate area where 
both expansions (1), (3) hold. In other words, the behaviour of the outer terms (in(1)) when 
approaching the singular point must match with that of the inner terms at infinity.  

The behaviour of V1(y1,y2) at infinity is prescribed: 
(4) 

The function V1(y1,y2) is independent of the applied load, only depends on the local 
geometry. Using a superposition principle we get a definition of the second term in (3): 

(5) 

Change of the potential energy δWp between the solutions of unperturbed (without crack 
increment) U0(x1,x2) and perturbed (with crack increment) Uε(x1,x2) situations for unchanged 
boundary conditions is by use of the  Betti´s theorem the following: 

(6) 

where Γ is any contour surrounding the corner and n its normal pointing toward the origin. 
The integral can be taken either in Ω0 (or Ωε) or in Ωin. Selecting the inner domain and 
substituting the asymptotics (1) – (4) into (6) (under the assumption of the constant loading 
conditions during the crack extension), the change of the potential energy δW per unit width 
between the initial position and the new crack position leads finally to: 

 (7) 

where H is the Generalized Stress Intensity Factor of the given crack terminating on the 
interface, ε is a dimensionless parameter (ε=l/L, where L is a characteristic size of the outer 
domain), δ - characteristic eigenvalue of the given singularity (Kotoul et al. (2006), Ševeček 
et al. (2006)), and K is a contour integral defined as follows: 

(8) 

In this integral V1 and σ(V1) denote a displacements and stresses on the inner domain 
calculated using FE analysis, ρε u and σ (ρε u) denote a displacements and stresses given by 
the singular solution – Ševeček et al. (2006).  Clearly K does not depend on the actual size of 
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the crack increment since it has been stretched to 1. Moreover it is independent of the applied 
loads which are included in H.  The function V1 can be computed by finite elements and K can 
be numerically calculated using the contour independent integral (8). 

 

4. Crack propagation criteria 
After the appropriate changes of potential energy (for the cases of singly or doubly 

deflected and penetrating crack) are calculated, the competition between these states can be 
assessed. The crack will follow that path, which maximises the additional energy ΔW released 
by the fracture process - Martin et al. (2001). It means for example, if crack deflection occurs 
preferentially to the penetration, the following condition must be satisfied: 

(9) 

and also vice versa. In (9) the G1
c denotes the toughness of material M1 and Gi

c interface 
toughness. For the methods how to obtain this characteristics see e.g. O´Dowd & Shih (1992). 
It is also worth remarking that the differential form of the condition (9) is identical to the 
maximum energy release rate condition in the case of the homogenous material. 

 

5. Numerical calculations 
The determination of the change of potential energy δWp - formulas (7), (8) due to a finite 
crack increment - requires a numerical solution of the stress and displacement field on the 
inner domain by FEM. For this purpose the FE system ANSYS 10.0 have been used. In the 
following figure is a demonstration of the FE mesh used for the case of singly deflected crack. 
Analogical mesh is used for the case of double deflection and penetration as well. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3  Example of the FE mesh used for the case of a singly deflected crack.  
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The model is made of two material layers M1 and M2, where the elastic properties of both 
materials are identical: EL = 137 GPa,  ET = EZ = 10,8 GPa GZT = 3,36 GPa νTZ = 0,49 GZL = 
GTL = 5,65 GPa νZL = νTL = 0,238 – only the main material directions are mutually turned by 
90°. Practically it means that material M1 has a Young modulus EL in the direction of the y 
axis and material M2 has EL is in the direction of x axis.  

The outer domain (see Fig. 3) is subjected to the displacement field on the diameter r=R:  

(10) 

where the characteristic eigenvalue δ and the function u(θ) are taken from the singularity 
analysis based on the complex potential theory and the Generalized Stress Intensity Factor H 
is calculated for the appropriate loading conditions using a combination of the two-state ψ-
integral and FEM – see Ševeček et al. (2006), Desmorat. & Leckie (1998). 

The crack increments of lengths ld, lp are used for the case of crack deflection and 
penetration respectively. Each of these cases is calculated separately. Under the loading 
conditions (10) on the outer domain, the stresses and displacements on the inner domain are 
calculated using FE system ANSYS. These results are subsequently used for the calculation 
of the change of the potential energy evoked by the small crack increase in the chosen 
direction. After the change of the potential energy (for all possibilities of the crack 
propagation) is calculated using relations (7) and (8), the additional energy for the 
corresponding states can be determined using formulas (9). Crack will then follow that 
direction which maximises this additional energy. 

Note:  Factual numerical results for all possibilities of crack propagation will be presented at 
the conference. 

 

6. Conclusion 
In the case of the cracks terminating on the interface of two materials the differential energy 
analysis is unsuitable due to the discontinuity in the elastic properties which leads to a zero or 
infinite energy release rates (depending on the type of the singularity). Therefore the theory of 
the Finite Fracture Mechanics is employed for the definition of the fracture criteria – crack 
increment of finite length is considered instead of the infinitesimal one. The change of the 
potential energy due to a crack growth by some finite increment is calculated using a 
combination of FEM and a matched asymptotic analysis. Three possibilities of the 
propagation directions – penetration, single and double deflection are taken into the 
consideration. The crack will follow that path which maximises the additional energy released 
by the fracture process. This criterion can be used for cracks terminating at the interface of 
two dissimilar materials, lying on it or for an arbitrary multimaterial wedge as well. 
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