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UTILISATION EXTENDED BOUNDARY CONDITIONS
IN FINITE ELEMENT ANALYSIS

L. Svoboda?l, B. Patzk ?

Summary: The authors are engaged in development of adaptive anaby$RC
frames using the microplane model. The utilised finite etemmeesh is compound
of 1D and 3D elements. In order to achieve a proper conneciimong these
elements it was necessary to satisfy complex boundarytommsli This connection
(boundary condition) was realized by “rigid arms” and “haimgy nodes” which are
special cases of “slave degree of freedom”. Implementasiod utilisation of the
universal type of slave DOF will be discussed in this work.

1. Introduction

The authors are engaged in development of adaptive analy&€ frames with microplane
joints. The analysis employasrefinement which combines 1D and 3D geometrical model
of RC beams. This approach leads to a complicated finite ele(R&) mesh consisting of 1D
(beam and truss) and 3D (brick) elements and brings two gnadl- generation of the mesh and
connection of all finite elements into one compact unit. Tissgathe first one it was necessary
to develop a special preprocessor capable to generate sugbosite FE mesh. In order to
achieve true response it was necessary to provide suitabteection of 1D and 3D elements.
There are two types of this connection. The first connecsdoeitween 1D and 3D model of
the RC beam (segment). The second one is realised inside ef@Dent between 1D elements
(representing bars of reinforcement) and 3D elementsdsgmiting concrete). To provide these
connections theigid arm nodeandhanging nodesvas implemented in FE code. Both nodes
were based on a so-callsthve degree of freedo(®DOF). The implementation and utilisation
of the hanging node, the rigid arm node, and the slave dedreeenlom as well as design of
the preprocessor will be discussed in this section.

2. Universal slave DOF

A common type of structural degree of freedom used in finikeneint packages supports only
basic form of Dirichlet boundary conditions. It is typicakble to simulate structural support
(displacement is equal to zero), initial displacement, r@spribed displacement. In order to
satisfy more complex boundary conditions the authorssetlithe universadlave degree of
freedom(sDOF) witch extends Dirichlet boundary condition.
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2.1. Definition

To illustrate the implementation we start from the geneavaif of equilibrium conditions of the
discretized system
K9 = f7% in Q, (1)

with appropriate basic boundary conditionsdh The symbolK” is the global stiffness ma-
trix, 79 is the vector of unknown generalised displacements, ghs the generalised load
vector. The dimensiom of this set of linear algebraic equations is equal to numbenoon-
strained degrees of freedom. The unknown displacemenbiveticompleted by known dis-
placements (prescribed or equal to zercorresponding to constrained DOFs) can be rewritten
into following form

r:{ri’;rg;...;rﬁl;fmﬂ;fmw;...;fn}T, (2)

where andn is total number of DOFs (both constrained and unconstraiaed (n — m) is
number of constrained DOFs. In this context the discussaa DOFr; is defined as a linear
combination of any other DOFs. In other words the slave i®alibhated to other DOFs called
master DOFs (masters). The general formulation of the atgphent of-th DOF which is slave
DOF can be written as

Ti = Qg +Zaijrja je(li)n(i,n), ie(ln) (3)
J

whereq;; are coefficients of the combination. The constapmeaning is initial displacement.
It is usually implemented already so it will not be furtheketa into account. The slave DO¥
is in range(1,n). It means it can be both constrained and unconstrained.ntcained, the
“slave dependency” is converted to some other unconsttaimaster (s)DOF-; which turns
into sDOF if not yet. So if the displacement of the constrdiskave DOF is written as (without
the constant,;,)

const. = 1; = aiﬂJ—O—Zaijrj, je (i) N @, J)n (Jn), 4)
J

then the displacement of the new (unconstrained) slave xXDbe expressed as

ry=—";— ;rjv ] € <1vl) N (Z7J) A (J’ TL), @ig 7& 0. (5)
- iJ

After these modifications the Eq. (3) can be simplified in®fibrm

7 :Zaijrj, je(1,9) N (i,n), ie(l,m) (6)

In the case that thieth master DOF is at once master and slave DOF, then the despknt-; in

Eq. (6) is replaced by the same equation. This recursivacepient is applied as long as there
is no slave DOF on the right hand side of the equation. Themddeinal linear combination
has to be checked again to avoid cyclic dependence of, thie itself.

Application of Eq. (6) brings reduction of number of unknol@®Fs so the final dimension
of global stiffness matri¥<? becomes onlym — s), wheres is number of slave DOFs in given
problem.



2.2. Implementation

There are two ways to apply the above defined slave DOF. Atfiestan do it on the global
level by substitution of Eg. (6) into Eq. (1). The advantagths way is its simple implementa-
tion. It is carried out by linear combination of rows of appriate global matrix (e.g. stiffness
matrix, mass matrix) and global vector (e.g. load vectogwiver, this implementation can be
complicated in the case when there are several variouset@athematical packages used for
assembling and solving of governing equations. For thisaedhe second way was preferred
— application on element level.

The Eq. (1) rewritten into element form follows
K°r® = f° in element, (7)

Dimensionr of this system of equations is equal to number of all DOFs emeht. In order

to get transparent expression, just one slave DOQmith s master DOFs, on element will be
further supposed. Applying Eg. (6) on vector and notating in matrix form the following
eguation can be written

r®=Tr", (8)
or itemised as
()
(1 [ 1 0 0 0 0 0] :
: STl L el e Ti—1
Til1 O ...1.0 ... 0 0 ...0 1
T =10 ... 0 ag ... as 0 ... 0 : (9)
Titt 0...0 0O ... 01 ..0 .
: P P R Tit1
re ) 0 ... 00 ... 00 ... 1] :
. Tr )

The superscript means astandardvector or matrix, the superscriptmeans a onexpanded
by Eq. (6). Substituting Eq. (8) into Eq. (7), the relation

KTr" = §° (10)

is obtained. To preserve usual symmetry of the set of equatioEqg. (7), Eq. (10) has to be
multiplied by the transposed matrik as follows

TTKTr* =TT f*. (11)
It can be rewritten in common compact form
K'r" = f*, (12)

where
K*=TTK°T, (13)

fx — TTfs ’ (14)



(a) e - shared nodes. () - hanging nodes anel- master nodes.

Figure 1. Connection of brick and truss elements via (a)eshandes and (b) hanging nodes.

2.3. Hanging node

A standard hanging node is node laying on an geometrical oosg of an element (edge, side
or volume) but the node cannot be identified with an existiagenon the element. Identical
displacement of the hanging node and the element is desk#dOFs of the element are
slave DOFs and have the same set coefficient. The nodes abittesgonding component are
masters. The set of coefficient is equal to interpolatiorcfions of the component.

An universal hanging node can utilise the slave DOFs onlyesiréd directions. The set
of coefficient need not be equal to interpolation functionséver the sum of the coefficients
should be usually equal 0.

2.4. Rigid arm

The RAN is connected to only one master. Its displacemenieasame suggests, is computed
from both displacements and rotations of the master.

3. Connection inside of 3D segment

In order to create a correct and flexible model of 3D segmeasfiame, it has to consist of
two independent meshes. The primary mesh, compound of 3Deels (here hexahedrons
bricks are used), represents concrete part of segment.uSecaicroplane material constants
have to be fitted according to experiments for one specifinete size, all bricks have to be
identical in size. Thus the primary mesh is regular. The sdany mesh is compound of truss
elements and represents the reinforcement.

To guarantee the bond between concrete and reinforcen@htpieshes have to be inter-
connected. In usual models this problem is solved duringiation of the primary mesh. Itis
generated so that the primary mesh is intersected by remrioent right in vertices of bricks and
nodes of the secondary mesh can be identified with the nodls pfimary one, see Fig. 1a.

In regular mesh, 3D elements are mostly intersected outrtites. In such case, interaction
between reinforcement bars and concrete bricks is ensyréditging-nodes. It means that
behaviour of a node of the secondary mesh is subordinatenavimir of several nodes of the
primary mesh. Practically all intersection points of a feinement bar and sides (edges) of
bricks have to be found. Hanging nodes lie at these pointsreasder nodes are identical with
vertices of corresponding sides (edges), see Fig. 1b.
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Figure 2: a) example b) uniform distribution c) parabolistdbution

Figure 3: Stress, . for uniform distribution.
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Figure 4: Stress,.. for parabolic distribution.

For this purpose a preprocessor was developed. At first,ds fall hanging nodes and di-
vides rods of the secondary mesh, which are given as lineesgigror polygons, into elements.
For each hanging node it finds its master nodes and computesiheoordinates inside corre-
sponding brick, side or edge. In the case of a large amourleofents, it would be too slow
to find hanging nodes going over all elements and finding ptssaitersection with each re-
inforcement polygon. That is why the preprocessor firsthypsmeomplete connectivity of the
primary mesh. Next it goes over each element and finds a masteent for the first node of
the polygon. Now the following intersection is searchedaglsvon elements adjacent to the last
intersected (master) element only. In this manner it coralong the polygon to its end.

4. Connection 1D and 3D segment - example

A simple beam is used for demonstration potential of theesl2@F. The left hand side part of
the beam is modelled by 3D elements, the second part is nedd&}l 1D beam elements. The
geometry, the load, and the support are shown in Fig. 2a).eTe@me longitudinal displace-
ment and same rotation in the midspan of the beano, mtildes (only DOFs in direction) are
modelled as the RAN and connectedtmode. To get same transverse displacement and to al-
low transverse contraction of 3D segment in the midspany thede (only DOFs in direction)

is modelled as the HN and connectea tmaster nodes. The distribution of the HN coefficients
is uniform, see Fig. 2b), and parabolic, see Fig. 2c). The stithe coefficients i4.0. The
parabolic distribution corresponds to real high-wiserdtistion of shear stress so it gives better
response, see Fig. 3 and Fig. 4.



5. Conclusion

An extended boundary conditions was presented. It allows@atement of particular DOF to
be computed as linear combination of other DOFs. The praptms® is general and powerful.
It enables to simulate complex and complicated boundargitons, as shown in this paper.
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