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Summary: Friction influence in analysis of a single degree of freedom oscillatory 
system (SDOF) is either neglected or accounted for by analytical methods, 
assuming steady state harmonic excitation. However, these methods are not 
suitable when the oscillatory system is subjected to low intensity random 
excitation. Two approaches to friction inclusion into oscillatory system model will 
be explained – the commonly used approach using the signum function and a 
physically correct stick-slip approach consequently solving the describing set of 
equations in each system state. Their relative merits will be illustrated using a 
SDOF system subjected to low intensity random excitation. It will be shown that 
the best discriminator for using either of the simulation approaches is the so-
called den Hartog’s factor K, relating the friction force to the excitation force. 
Comparison of simulation results will illustrate these findings and underline the 
advantages of the second approach from engineering point of view. 
 

1. Introduction 
The analysis of translatory oscillatory systems is an essential part of machine dynamics and 
the starting point of further studies in engineering vibrations. The essential form of such an 
oscillator is a combination of rigid mass m, linear mass-less spring with spring constant kx and 
an idealised viscous damper with resistance proportional to relative velocity, described by 
damping constant b. The mathematical treatment of such a system is well known. The 
external excitation can be either a time variable force F(t) acting on the mass m or a kinematic 
excitation in form of absolute displacement u(t) and its derivatives )(tu& or )(tu&& , acting on the 
oscillatory system support, as is the case analysed here. The equation of motion is then: 

,0)()(x =−+−+ uxbuxkxm &&&&       (1) 
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which can be re-written using the time dependent relative displacement xr = x – u and its time 
derivatives rx& , rx&&  as:  

umxbxkxm &&&&& −=++ rrxr .      (2) 

However, for many real mechanical oscillatory systems this description is too simple: 
- Structural constraints limit the free travel i.e. stroke (relative displacement xr) of the 

oscillating mass.  
- Description of vibratory energy dissipation by a linear, relative velocity dependent 

damper is too simple.  

Another important issue is the dry friction, ever-present in any mechanical systems. The 
friction element may be introduced intentionally, to act as a means of vibratory energy 
dissipation, or, more likely, is an unwanted consequence of the system design or construction. 
In such oscillatory systems the influence of friction cannot be neglected [1, 4, 5]. The simple 
linear SDOF oscillatory system may be an oversimplification of reality and its analysis may 
lead to erroneous conclusions. This is specially so for random or transient kinematic 
excitation, as is often the case in ground transportation. In this class of problems the variable 
of interest is the vibratory acceleration x&&  of mass m rather than the displacement variable. 
Hence it is worthwhile to analyse oscillatory systems in which both a linear damper and a 
friction element (described by a general friction force Ff) are present, as depicted 
schematically in Fig. 1, especially from the point of view of acceleration transmissibility. 
Then the above equations of motion are slightly modified to become: 

,0)sgn()()( fx =−+−+−+ uxFuxbuxkxm &&&&&&      (3) 

or:     ( ) .sgn rfrrxr umxFxbxkxm &&&&&& −=+++         (4) 

The general damping force Fd (or mixed damping force in Den Hartog’s notation [3]) is 
described by expression: 

( )rfrfd sgn)sgn()( xFxbuxFuxbF &&&&&& +=−+−= .    (5) 

From a mathematical point of view such an oscillatory system belongs to the class of non-
conservative, non-linear systems. Non-linear oscillatory systems can be classified by various 
criteria, e.g. as:  
-  Oscillatory systems with continuous type of non-linearity (smooth systems). The 

mathematical solution is essentially time-invariant and can be treated by sophisticated 
analytical methods [7–9].  

-  Oscillatory systems with discontinuous type of non-linearity (dry friction, impacts, free-
play, etc.), as is the case here. The discontinuous non-smooth non-linearity causes a time 
dependent change in the system dynamics [4, 5].  

The most common approximate analytical approaches are either to use the harmonic 
balance method, described first in this context fully by [3], or to solve the particular 
differential equations in respective time intervals [7–9]. This is laborious and may lead to 
transcendental equations [6]. Here the simulation approach will be followed, assuming 
excitation by vibratory acceleration )(tu&& , to arrive at solutions that are viable from 
engineering point of view and realisable in commercial simulation software, e.g. MATLAB ®.  



 

Fig. 1. Schematic layout of analysed horizontal 
single degree-of-freedom oscillatory 
system with friction influence. 

 

Fig. 2. Friction force Ff courses as 
function of relative velocity vr. 

 
In analysing an oscillatory system with both viscous damper and dry friction the primary 

question concerns the relative contribution of both dissipative terms to the total vibratory 
energy dissipation and thence the influence of both terms on typical system response 
characteristics, e.g. transfer function, time response, etc. This will be the aim of this paper.  

 

2. Dry friction models 
The first comprehensive scientific work on dry friction is attributed to Coulomb in 1785, 
however already the genius Leonardo da Vinci around 1500 was occupied by dry friction 
research [10]. Despite many years of research, the mathematical description of this 
phenomenon is not yet fully developed [1, 2, 10]. The phenomenon is not always 
reproducible, as its extent depends on surface state, lubrication, asperities, temperature, 
magnitude of normal force, relative velocity, etc. [1, 2, 10–12]. Various approaches to this 
problem are presented in the literature, e.g. [13]: 

- The macro (or phenomenological) approach assumes single dissipative force acting at the 
interface between sliding surfaces. This approach is often denoted the static friction model. 

- The micro approach takes into account detailed knowledge of characteristics of the sliding 
surfaces including roughness, asperities, adhesive phenomena, friction hysteresis, limit 
cycles, memory effects, surface lubrication, other tribological parameters, etc. This 
approach is often used in the so-called dynamic models [2, 11, 12]. These models are 
rather complicated and assume detailed knowledge of phenomena associated with the 
sliding surfaces.  

Static friction models are based on the relation of the friction force Ff to the relative 
velocity vr between the sliding surfaces in a phenomenological way. Basic approaches are 
described below, according to the notation of Figure 2: 

A/ The Coulomb type friction characteristics FC which may be mathematically described 
by the relay characteristics [1, 13, 14]: 

Ff = FC sgn(vr), FC ≡ Ffk = µkFN,     (6) 

where Ff is the friction force course, FC is the Coulomb friction force and vr is the relative 
velocity between the sliding surfaces. This model involves a proportional relationship 
between the Coulomb friction force FC, sometimes denoted as kinetic friction force Ffk, and 



the normal loading force FN [11, 15] which is usually assumed to be constant. The 
proportionality constant µk is the dimension-less kinetic friction coefficient. The kinetic 
friction force Ffk, is independent of vr; however for vr = 0 it cannot be determined, i.e. the 
force Ff can have any value in interval (–Ffk, +Ffk).  

The signum function sgn(vr) is often [8, 14, 15] mathematically described as: 

( )
0for1
0for1

sgn
r

r
r <−

>+
=

v
v

v .      (7) 

Different authors define different function values for the argument value vr = 0 [4, 16, 24]. 
Note also that the signum function, as defined by expression (7) has no limit for vr = 0 and is 
therefore not differentiable for vr = 0, and hence is not a smooth continuous function. 

B/ In reality a larger force is needed to start the sliding motion, i.e. for overcoming the 
adhesion at zero relative velocity a larger force Ffs is required than when the two surfaces are 
continuously sliding over each other [11, 15]. The friction force at vr = 0 has to be described 
as a function of a limit force FL, external to the dry friction interface. The limit force FL is 
obtained by analysing the force balance across the interface between the sliding surfaces, and 
has to be compared to the static friction force value Ffs:  

if |FL| ≤ Ffs ⇒ vr = 0.       (8) 
If this condition is met the system is at standstill in the so-called stick state, indicated in Fig. 2 
by the vertical line segment. If at a certain time instant the adhesion force Ffs is overcome by 
the external force, the oscillatory systems starts to move abruptly and the relative velocity vr 
attains some non-zero value, as described in more detail in [1]. From this instant Eq. (6) is 
valid until vr eventually decreases to zero and the system stops again for a certain time 
interval until the static friction force is overcome again. This start-slide-stop movement (stick-
slip movement) leads to non-unique solution of equations describing the motion and poses 
mathematical difficulties [8, 14–16]. In analogy, the static friction coefficient μs is defined as 
μs = Ffs/FN, and μs > μk, because Ffs > Ffk.  

C/ The Stribeck’s effect is observed in some cases of well-lubricated surfaces [1, 2, 22] 
when the sliding friction force is dependent on relative velocity vr. It exhibits a certain 
minimum at a relative velocity known as the Stribeck’s velocity vS and then increases with 
higher velocities. It is described by a velocity dependent function f(vr): 

Ff = f(vr),   if vr ≠ 0, 
Ff = FL,    if vr = 0 and FL < Ffs,     (9) 
Ff = Ffs sgn(FL),   if vr = 0 and FL ≥ Ffs. 

In some simulation approaches the Stribeck’s effect is modelled using a Gaussian 
distribution function [19] to account for the discontinuous natural dynamics of the state 
change at the start of the slipping motion (step transition Ffs → Ffk or μs → μk). It is argued, 
that the restraining (adhesive) force is a composition of all the micro actions across the 
interface of contacting surfaces and their asperities [4, 12]. These actions take place 
consecutively and not abruptly [1, 2, 22]. The Gaussian model, introduced by Eq. (10), is a 
reasonable continuous approximation to this state change:  
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Further analysis will deal with an oscillatory system assuming two ways of dissipating 
vibratory energy by a linear viscous damping term and by a dry friction term - Eq. (5). Four 
different cases may arise, depending on the respective proportion of each dissipating term in 
Eq. (5) to the general damping force Fd, as illustrated in more detail in [23]. 

 

3. Approaches to dry friction analysis and modelling 
3.1. Introduction 
In employing static friction models for the analysis of oscillatory systems, essentially two 
general approaches are feasible:  

i. An approximate analytical one, based on the harmonic balance method approach; 

ii. A simulation one, employing contemporary simulation software, making use of 
conditioned switching between solutions in a time-scale that is short in comparison to the 
dominant period of the excitation signal [4, 5]. The simulation approach enables to use 
either the signum function approach, described by Eqs. (6) and (7) or a more physically 
sophisticated approach using the limit force analysis of Eqs. (8) and (9) and in case of 
accounting for the Stribeck’s effect also Eq. (10). The merits of both approaches have to be 
thoroughly assessed in the context of the specific case to be analysed.  

One of the first rigorous attempts at computer simulation of the influence of friction on 
dynamic systems was made by Karnopp [20]. He considers the causality issues and introduces 
a region of small relative velocity Dvr around zero, indicated by the vertical line segment in 
Fig. 2. Outside of this region the Coulomb approach is valid, whereas within this region Ff is 
determined by other forces acting in the system in such a way that the Ff remains within the 
region, until a breakaway force (i.e. the static friction force) is exceeded. He illustrates the 
advantages of this approach on various examples using the bond graph approach and in this 
way designing a set of appropriate conditions. 

3.2. The harmonic balance method 

The harmonic balance method assumes a harmonic excitation by acceleration u&&  (with root 
mean square (RMS) value a0u) or rather by absolute displacement u with amplitude u0 and 
variable angular frequency ωx. The method for b = 0 is fully explained in standard textbooks  
e.g. [11, 15, 17]: the equivalent damping coefficient be in vicinity of resonance of a linear 
oscillator is introduced, depending on the amplitude of equivalent relative displacement ζe:  

xe
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Fb = .       (11) 

If the assumed harmonic solution is resolved then in steady state:  
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where 0u
2

00 2mamuF x −=−= ω  is the amplitude of an equivalent excitation force 
and mkx0 =ω  is the system natural frequency. 

The formula can be expressed in a more transparent way: 

( ) 2

12

0

x
2
00u

xe 11
2

K
a

−







−=

−

ω
ω

ω
ωζ ,   (12b) 

with a non-dimensional factor K after [21]: 
0

fk

π
4

F
FK = ,     (12c) 

The factor K will subsequently be termed Den Hartog’s factor and (except for a 
multiplicative constant) it relates the kinetic friction force Ffk to the body driving force F0. 
Specifically for the horizontal oscillatory system of Fig. 1 with constant normal force 
FN = mg, the Den Hartog’s factor K has the form (g is standard gravity acceleration) [17]: 

0u

k

2
g

π
4
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K

µ
= .      (12d) 

Eq. (12b) describes the modulus of the frequency response function (FRF) of the relative 
displacement for harmonic excitation with constant displacement amplitude in vicinity of 
resonance. However, expressions (12a) and (12b) are approximate and valid only for K < 1, 
i.e. for F0 > (4/π)⋅Ffk ≅ 1.273 Ffk, i.e. for base horizontal acceleration a0u > (2√2/π)⋅(gµk). 
In other words the driving force has to be sufficiently large in comparison to the kinetic 
friction force to permit the use of Eq. (12b).  

For F0 < Ffk, or rather for F0 < Ffs no movement is possible as the driving force would not 
overcome the adhesion force. If F0 ∈ (Ffk, (4/π)⋅Ffk) ≈ (Ffk, 1.273 Ffk) the movement is not 
pure harmonic, but has one or more stops within one period [2, 11, 21] and is not described 
by the above approximate formula, as K ≥ 1 and the term under the square root is not real. If 
the frequency of excitation ωx approaches ω0, the amplitude of oscillations at resonance will 
eventually grow beyond any limits [11, 15]. The system behaves as an undamped one with 
linearly increasing relative displacement amplitude xr [15, 17] until structural limit is reached. 

The case with both viscous and dry friction damping can be also solved using the harmonic 
balance method however the formulas are somehow cumbersome [21]. The Den Hartog’s 
approach cannot account for the stick-slip phenomenon, which is accounted for by a 
procedure illustrated in [7, 9] for specific cases under harmonic excitation. None is applicable 
when random excitation is assumed, as often occurs in practice. This is especially so, if the 
equivalent excitation force amplitude F0 = √2ma0u would randomly fluctuate below Ffk and 
above (4/π)Ffk and the relative velocity vr would be low, i.e. if the friction force would be 
commensurable with the driving force of the isolated body.  

 

 



3.3. Use of the signum function 
Use of the signum function for simulation of an oscillatory system with friction is an easy 
option that is facilitated by any simulation software. The describing equation of motion has 
the form (4), repeated here as Eq. (13):  

for vr ≠ 0: ( ) umxFxbxkxm &&&&&& −=+++ rfkrrxr sgn .    (13) 

For vr = 0 the sgn function is set to zero [4, 16, 24] and so analysis for vr = 0 is completely 
omitted. Sometimes the discontinuous signum function (7) is substituted by a continuous 
function, which approximates sgn function with required degree of accuracy [13, 14]: 

( ) ( ) ( ) ( )
r

r
rrrr 1

erftanharctan
π
2sgn
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cvcvcvcvv

+
≈≈≈≈ .  (14) 

Constant c in each of the functions describes the numerical “match” between the sgn 
function and the respective continuous function used for approximation. The selection should 
be governed by following rules [13]:  
- if it were too small, approximation would differ too much from the sought non-smooth one;  
- if it were too large the effort is too great and the approximation is not sufficiently smooth.  

In [14] selected numerical values are analysed. It is demonstrated, that a value of c ≥ 103 
suffices to fulfil both conditions and the fit with analytical solution is within 1 %. It is 
suggested that the last formula is better with regard to computational speed in attaining the 
same level of accuracy.  

Any of the above approaches circumvents the problem of solving differential equation (13) 
with the discontinuous non-smooth signum function by introducing a continuous smooth 
function with arbitrary large derivative at zero crossing. The last formula of Eq. (14) was 
further used and a simple simulation program in MATLAB/Simulink has been developed. 

3.4. Use of the stick-slip approach 
If the stick-slip phenomena are to be accounted for following approach has to be followed: 

1.  For vr ≠ 0 Eq. (13) is valid; 

2. When the vr ≠ 0 to vr = 0 transient occurs, the movement stops and the force balance 
condition across the friction interface has to be tested by the following set of conditions: 

i. Slipping: |vr| > ε OR |FL| > Ffs,       (15a) 

ii. Sticking:  |vr| < ε AND |FL| < Ffs,      (15b) 

while: rxL xkxmF += && ,        (16)  
and ε is a sufficiently small number, representing the vicinity of zero.  

Conditions (15) can be expanded further into a more subtle set of conditions, which formed 
the basis of the computation algorithm [6]. For smoothing the vr = 0 to |vr| ≠ 0 transient the 
Gaussian approximation (10) may be used. 

This approach follows that one of Karnopp [20], using ε ~ Dvr, however the bond theory is 
not applied. Further evaluation of condition vr = 0 has to be analysed in some detail.  

 



3.5. Determination of condition vr = 0 
The operation of determining when vr reaches zero, or in numerical systems rather the 
condition |vr| < ε, is generally called “variable zero-crossing operation” and is facilitated in 
standard simulation software by specific procedures (see e.g. [24]). The main difficulty for 
numerical systems with equal time increments is the need for precise determination of the 
time instant, when the zero-crossing occurs, or when |vr| < ε, while the value of ε has to be 
assessed independently. This is very important when processing real-world data, commonly 
sampled at equal time increments. The standard stiff ordinary differential equations solvers 
with variable time increment are not applicable, unless the sampled data set could be re-
interpolated in the same way. Another approach is to develop an ordinary differential 
equations solver with fixed time increment, which specifically caters for determining the 
|vr| < ε condition within the given fixed time increment ∆t, as was the case here. Detailed 
analysis of the zero neighbourhood identification and selection of proper simulation time 
increment ∆t is given elsewhere; interested reader is referred to [18, 22]. 

 

4. Comparison of the two dry friction force simulation approaches 
In the previous chapter two approaches for accounting for dry friction influence in oscillatory 
system modelling were introduced. In this chapter the differences are highlighted.  

In many applications time courses of different variables are less important, while aggregate 
and statistical characteristics are preferred, e.g. maximum and minimum values, RMS, crest 
factors, power spectral density (PSD), amplitude distribution etc. Here the acceleration RMS 
values will be used, as explained above.  

When the signum function method is used a high friction value in combination with low vr 
results in numerical instability causing parasitic oscillations in the time interval where vr 
course is crossing the zero value. The error appears in the response acceleration and not in the 
relative displacement. It can be explained in following way: the sign output of the signum 
function for the i-th step is determined by the value in the (i – 1)-th step. In the vicinity of the 
zero crossing point the signum function forces the value for the next step to have the opposite 
sign and vice-versa. If the simulation interval ∆t is too large, or the vr change is too slow, false 
oscillations with period 2∆t occur, even if the real system would stop due to friction. In 
analysing real world sampled data, the time interval is set at the time of data acquisition, and 
later comparison by simulation means has to follow suit, or the sampled data would have to 
be re-sampled. Thus the choice of simulation interval ∆t is to some extent limited. If the 
simulation interval is too large, parasitic oscillations occur when using the signum approach. 
These oscillations do not occur when using the physically correct stick-slip approach.  

This is illustrated in Fig. 3 based on simulation of real-world data and their comparison to 
output acceleration course measured under field conditions with random input acceleration 
excitation a0u = 0.35 ms-2. Note false oscillations for Ffk = 45 N; whose consequence is a 
markedly different acceleration RMS value obtained by evaluating the output signal from the 
model using the stick-slip approach (a0x = 0.33 ms-2), compared with the signum approach, 
which gives a0u = 0.50 ms-2. The difference is not marked for the lower Ffk = 15 N (0.30 ms-2 
versus 0.31 ms-2), where virtually no sticking occurs in the time interval shown. This example 
illustrates the principal drawback of the signum method applied to oscillatory systems in 



which the driving force may fluctuate around the dry friction force value. Another example, 
employing also the Stribeck’s approximation after Eq. (10) is presented in [23]. 

 

(a) 
 

(b) 

Fig. 3. Time histories of acceleration response for an oscillatory system with different friction 
force under random excitation: stick-slip model (▬▬), signum model (▬ ▬). 

It is of importance, whether for given conditions it is necessary to turn to the somehow 
complicated and more computationally demanding physically correct approach, or the signum 
approach suffices. As already indicated and described in more detail in [6] the decisive factor 
is the Den Hartog’s factor K, relating the dry friction force Ffk to the mass driving force F0. In 
analogy to the damping ratio ξ (relating the acting damping constant b to the critical one: 
bc = 2√(mkx) the den Hartog’s factor can be also termed the relative friction coefficient.  

Further to Fig. 3 it is interesting to explore in more general way the influence of dry 
friction force magnitude on system behaviour. Due to system non-linearity classical 
description by frequency response function, assuming harmonic input and output variables 
(accelerations) is not applicable. Instead the acceleration transmissibility function in the x- 
direction Tax is used, defined as: Tax = a0x/a0u. Here a0x and a0u respectively are the RMS 
values of the respective acceleration time courses ax and au. In this way the non-linear effects 
of the oscillatory system with dry-friction influence are accounted for. The oscillatory system 
has following parameters: m = 88.4 kg, kx = 11.5 kNm-1, i.e. bc = 3017 Nsm-1. Two systems 
are considered a system without viscous damping and a system with damping ratio ξ = 0.25, 
i.e. damping constant 504 Nsm-1.The transmissibility Tax courses related to factor K for two 
excitation levels, a0u = 0.35 ms-2 and a0u = 0.67 ms-2 are depicted in Fig. 4. In a companion 
Fig. 5 the probability of sticking ρ for the stick-slip approach is depicted, defined as the time 
when the system is in the stick state in relation to total duration of simulation (expressed in 
per-cent) for given K. The employed random excitation signals were actually measured in 
field tests with a heavy truck with a main vibratory power maximum around 2.0 Hz, flanged 
with two narrow band maxima at 6.3 Hz and 12.6 Hz respectively. 

Note the large discrepancy between transmissibility Tax calculated using the signum 
approach (solid pink line in Fig. 4) and by the physically correct model (black and green solid 
lines in Fig. 4) for higher K factor values. This is due to parasitic numerical oscillations in the 
signum model, illustrated in Fig. 3. From Figs. 4 and 5 it can be seen that these differences 
emerge when ρ is larger than some 50 %. The corresponding K factor threshold value is 
K ≅ ¾ = 0.75. As factor K increases the sticking becomes more often and transmissibility Tax 
asymptotically converges to unity, i.e. the oscillatory system becomes stuck and moves as a 
rigid body. Note there are oscillations for K ≥ 1 which are not accounted for at all by Eq. (12). 



 
 

Fig. 4. Transmissibility Tax dependence on factor K 
(▬▬ a0u = 0.35 ms-2; ▬ ▬ a0u = 0.69 ms-2). 

 

 
 

Fig. 5. Probability ρ in dependence on factor K  
(▬▬ a0u = 0.35 ms-2; ▬ ▬ a0u = 0.69 ms-2). 

 
On the lover end of the K factor value (say, for K ≤ ¼ = 0.25), there is seen an obvious 

difference between the damped system (lower pair of lines) and the undamped system (upper 
pair of lines). Due to low friction the oscillatory system without viscous damping is not able 
to extract sufficient amount of the vibratory energy transmitted throughout and the 
transmissibility Tax increases beyond acceptable limits (lines approaching upper frame border) 
Both approaches to dry friction modelling furnish the same Tax dependence on K for K < 0.50. 

 

5. Conclusion 
The contribution deals with the analysis and simulation of a general single of degree of 
freedom oscillatory system with vibratory energy dissipation by both an idealised linear 
viscous damper and a dry friction interface. For modelling the dry friction interface the 
phenomenological macro-slip approach is employed, described first by the approximate 
harmonic balance approach, then by the signum function approach and by the physically 
correct stick-slip approach. The last two approaches both are illustrated by a simulation 
example using as the input stationary random excitation acceleration from a real situation. 
The differences in the two approaches are highlighted, indicating that the physically correct 
stick-slip approach describes the reality better than the computationally simpler signum 



approach. The signum approach is prone to false numerical oscillations that completely distort 
the acceleration response signal. These effects are dependent on the relation between the dry 
friction force value and isolated body driving force, best described by Den Hartog’s factor K 
(the relative friction coefficient).  

It can be concluded that the simpler model, employing the signum approach, is suitable for 
oscillatory systems with low inherent dry friction and high driving force, whereas for correct 
modelling of systems with higher friction and low driving force the limit force analysis 
approach is essential. A possible discrimination between using of either of these models is the 
Den Hartog’s factor value of K ≈ 0.50 ÷ 0.75. For lover K values the signum model suffices, 
whereas for higher values, when the probability of sticking rises above 50 % of the simulation 
time, the physically correct model use is inevitable. 

The limit force analysis approach describes reality correctly from a physical point of view, 
including as it does also the static friction. It is universally applicable to any oscillatory 
system with dry friction in a generic way, irrespective of the magnitude of the Den Hartog’s 
factor. The SDOF oscillatory system including a physically correct dry friction model that has 
been developed and described here is of a generic nature and can be widely used for systems 
modelling in transport industries. Its application circumvents deeper knowledge of advanced 
methods of non-linear systems analysis and enables more effective exploitation of available 
simulation software for better understanding of the performance of oscillatory systems.  
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