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ON APPLICATIONS OF GENERALIZED FUNCTIONSTO
CALCULATION OF BEAM-COLUMN DESIGN ELEMENTS

J. Sobotka*

Summary: The classical mathematical model of beam-columns contains
derivatives of functionsfor the bending moment, the shear force, the axial force,
the dope, and the deflection, that are not defined at points in which internal
supports or concentrated lateral and axial loading or internal hinges or internal
diding connections are Situated. In order that the mathematical model of the
beam-columns may be valid also at these points of discontinuity we use
generalized functions and derive the generalized mathematical model in the form
of a system of ordinary differential equations. We use the Laplace transform for
solving this generalized model with constant axial tension force. The solution
found is the generalization of the classical initial parameters method because it
covers also discontinuous beam-columns, i.e. with internal hinges or internal
diding connections.

1. Introduction

The classical mathematical model of beam-column bending in the form of the system of
ordinary differential equations (SODE) contains classical derivatives that are not defined at
points of discontinuity of unknown functions such as the shear force, the bending moment, the
slope, and the deflection. Such discontinuities occur in calculation experience at pointsin
which concentrated forces, concentrated moments, internal supports, internal hinges or
internal shear-free connections are situated.

In order that the mathematical model for beam-column bending may hold true also at the
points of discontinuity mentioned we use distributional derivatives for unknown functions and
derive the generalized SODE. The generalized mathematical model for beam-column bending
contains the Dirac distribution at various places so as to represent corresponding
discontinuity. The discontinuity in the shear force may also occur a an internal hinge and the
discontinuity in the bending moment may also occur a an internal sliding connection by
virtue of the axial force. The discontinuity in the equivalent distributed force, in the flexural
stiffness or in the axial force may be represented through the use of the Heaviside's unit step
function.

The general solution to the generalized model of the beam-column bending may be found
by means of the Laplace transform for prismatic beam-column with constant axial force.
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2. The Classical Mathematical Model of Plane Bending of Straight Slender
Beam-Columns

This classical model (Némec, Dvorék, Hoschl, 1989) may be formulated as the system of
ordinary differential equations (SODE) of the first order Egs. (1) to (4), and was derived
under the following assumptions: (i) an infinitesimal element of a beam-column was cut out
in the deformed shape, (ii) the Bernoulli-Navier hypothesis holds true, i.e. the cross sections
of the beam-column remain always plane and perpendicular to the beam-column axis.
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where

T(X) shear force [N] (positive one causes an angle of turn clockwise of the tangent line
to the beam-column axis)

M(x) | bending moment [Nm] (positive one causing positive curvature)

f(x) | slope[rad] (positive direction counterclockwise)

v(x) | deflection [m] (positive direction upward)

a.(x) | equivalent distributed force [N/m] (positive direction downward)

a.(X) | equivalent distributed moment [NnmVm] (positive direction clockwise)

JX) area moment of inertia[ M* |

N(X) axial force of a beam-column (positive as tensile) [N]

E Y oung's modulus [Pa]
X longitudinal axis of a beam-column
Remark.

In place of the equilibrium Egs. (1) and (2), the following Egs. (5) and (6) are frequently used
intechnical literature

d oo
5 T =-0,0) (5)

. ..
dXM(X)zT(x)+N§£(V(X)% (6)

though they give incorrect diagram of the shear force ( where N(x)=N=const.), which may be
checked up by means of the finite element method.




3. The Generalized M athematical M odel of Bending of Straight Bernoulli-Navier
Beam-Columns

The Egs. (1) to (4) contain classical derivatives that are not defined at points of discontinuity
of the unknowns. In order to rectify this ineffectiveness, that comes out in practical
calculations, we have used the distributional derivative for unknowns hence we have
developed the generalized model of plane bending for straight slender beam-columns, Egs.

(7) to (10).
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where
Dirac(x-g) | Dirac distribution (Dirac-delta function or unit-impulse function) at x = &
Fi magnitude of the ith concentrated force [N] (positive direction of a concentrated
lateral force is downward)
M magnitude of the ith concentrated moment [Nm] (positive direction of a
concentrated moment is clockwise)
F magnitude of a jump discontinuity in slope of a Bernoulli-Navier beam-column
initsith internal hinge [rad]
D, magnitude of a jump discontinuity in deflection of a Bernoulli-Navier
beam-column in itsith internal sliding connection [m]
O0<a distance between the ith concentrated lateral force and the left end
of the beam-column [m]
O<b, distance between the ith concentrated moment and the left end
of the beam-column [m]
0<g distance between the ith internal hinge and the left end of the beam-column [m]
0<d distance between the ith internal sliding connection and the left end
of the beam-column [m]
ny number of concentrated lateral forces except for end ones
n, number of concentrated moments except for end ones
N3 number of internal hinges
ny number of internal sliding connections
T(a, +0) | adirectional limit of T(x) a x = a, taken from the right
T(a, -0) | adirectional limit of T(x) at x = &, taken from the left
M( b, +0) | adirectional limit of M(x) at x = b, taken from the right
M( b, - 0) | adirectional limit of M(x) at x = b, taken from the left
f (c,+0) | adirectional limit of f (x) a x= c, taken from the right




f (c,-0) |adirectional limit of f (x)a x= c, taken fromthe left

v(d, +0) | adirectional limit of v(x) at x = d, taken from the right

v(d,-0) |adirectional limit of v(x) at x= d, taken from the left

Developing Egs. (7) to (10), we start with composition of equilibrium equations for
infinitesimal elements with a concentrated lateral load or with an internal kinematic pair cut
out of a beam-column.

Let us suppose that the shear force T(x) has a jump discontinuity at point X = @, of
magnitude
T(a,+0)-T(a -0)=-F; (11)

caused by a concentrated lateral force. Then the distributional derivative of T(x) would be in
the case of only one concentrated lateral force
T =-q(x)+ §£< (N(x) f (x))§+ [T(a, +0)-T(a, - 0)]. Dirac(x - a,) (12

Substituting here Eq. (11), we arrive at

T’:-qn(x)+§£((N(x)f(x))§ -F, . Dirac(x - a,) 13

Let the bending moment M(x) have a jump discontinuity at x = b, of magnitude
M(b, +0) - M(b, -0) = M, (14

caused by a concentrated force couple. Then the distributional derivative of M(x) would be in
the case of only one concentrated moment

M" = T(x) +q_(x) + [M(b, +0) - M( b, -0)] . Dirac(x- b,) (15)

Introducing here Eq. (14), we arrive at

M’ = T(x) +q,(x) + M, . Dirac(x- b)) (16)

Let the slope f (X) have a jump discontinuity at x = ¢, of magnitude
f(C1+0)'f(C1'O):F1 (17)

asaresult of placing of an internal hinge. Then the distributional derivative of f (X) would be
in the case of only one internal hinge
_ M(x)
~ EJXx)

Introducing here Eq. (17), we come to

+[f (¢, +0)-f (c, -0).Dirac (x-C,) (18)




. QAJ((’;)) + F, . Dirac (x- ¢, ) (19)
The axial force of the beam-columnisN( ¢, ) at the internal hinge. Then there isajump
discontinuity in the shear force of magnitude N( ¢, ).sin( F, ) at thisinternal hinge of a beam-
column. Assuming that F, <<1, we can use the following equation N(c¢,).sin(F,) =
N(c,).F, . Introducing Eqg. (19) into Eq. (13), the impulse of magnitude N( ¢, ). F, will
appear automatically.  The unknown value F; may be determined by means of the
deformation condition for the internal hinge (Sobotka, 2006).

Let the deflection V(X) have ajump discontinuity at x =d, of magnitude

v(d; +0)-v(d, -0)= D, (20)

as aresult of placing of an internal sliding connection. Then the distributional derivative of
v(X) would be in the case of only one internal sliding connection

v = f(x)+[v(d +0)-v(d, -0)] .Dirac(x-d,). (21)

Introducing here Eq. (20), we arrive at
v = f(x) + D, . Dirac (x-d,) (22)

The axial force of the beam-columnis N( d, ) at the internal sliding connection. Then there is
a jump discontinuity of magnitude D, .N( d, ) in the bending moment at this internal sliding

connection. Introducing this impulse into Eg. (16), we come to the final form for the
distributional derivative of M(x) in the case of one internal sliding connection and one
concentrated moment along a beam-column

M”= T(x) +q,(x) + M, . Dirac(x - b,) + D, .N(d, ).Dirac (x-d,) (23)

The unknown value D, may be determined by means of the deformation condition for the
internal sliding connection (Sobotka, 2006).

4. The Laplace Transform of the Generalized SODE of Straight Prismatic
Beam-Columnswith Constant Tensile Axial Force (N(x) = N)

The equations (7) to (10) will be transformed as follows
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where
p avariable for the Laplace transform
laplace L aplace transform operator

laplace(f(x), X, p) Laplace transform of f(x)

T(0), M(0), @ (0),v(0) | constants of integration in the form of initial parameters

5. The Laplace Transforms of Unknown Functions T(x), M(x), f (X) , v(x)

We use a substitution N=E Jw? and determine the unknown Laplace transforms of T(x),
M(x), T (X) , v(x) as solution to the system of linear algebraic Eqgs. (24) to (27) asfollows
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6. The General Solution to the Generalized SODE, Egs. (7) to (10), for Prismatic
Beam-Columnswith Constant Axial Tensile Force N=E Jw?

The unknown functions T(x), M(x), f (X) , v(x) may be determined by means of the inverse
Laplace transform of Egs. (28) to (31) asfollows

T(x) = T(0) cosh(w x) +w sinh(w x) M(0)
nl L
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7. Conclusions

The contribution of this paper is that the generalized system of ordinary differential equations
(7) to (10) derived for sraight beam-columns holds true also for discontinuous unknown
functions. The general solution to the generalized SODE for prismatic beam-columns with
constant axial force is the generalization of the classical initial parameters method for
discontinuous beam-columns, i.e. containing internal hinges or internal sliding connections.

The general solution (32) to (35) was found for prismatic beam-columns with constant axial
tensile force by means of the Laplace transform method using symbolic programming
approach.
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