
 

RHEOLOGICAL CHARACTERISATION OF LDPE MATERIALS 
BY MEANS OF DIFFERENTIAL CONSTITUTIVE EQUATIONS 
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Summary: For rheological description of branched LDPE melts (Escorene 
LD165BW1 a Bralen RB0323) the following differential constitutive equations 
were used: eXtended Pom-Pom, Phan Thien-Tanner-XPP, and modified Leonov 
models. There was carried out quantitative and qualitative comparison of 
efficiency of the predictions determined by these models with the experimental 
data measured at 200oC. For both materials there were measured linear 
viscoelastic properties, shear and uniaxial extensional viscosities.  
                                                                     

1. Introduction 

Application of differential constitutive equations allows direct investigation of usually 
unknown relationships between molecular structures of the polymers and their rheological 
responses during the modern processes which can be both steady and transient. With the aim 
to understand more thoroughly the behaviour and possible differences of the differential 
constitutive equations, we decided to concentrate on three models, two molecular ones i.e. the 
eXtended Pom-Pom model (Verbeeten et al. (2001)) and PTT-XPP one (Tanner & Nasseri 
(2003)), and the modified Leonov model (Zatloukal (2003)). In more detail, the attention will 
be paid to their predictive/fitting capabilities in the particular types of the steady and transient 
flow situations typically occurring during polymer processing. Two common LDPE materials 
(Escorene LD165BW1, Exxon, USA and RB0323, Slovnaft, Slovakia) were used.  

  

2. The eXtended Pom-Pom (XPP) model 

The original Pom-Pom model (McLeish & Larson (1998)) was later extended by Verbeeten et 
al. (2001). A single equation for viscoelastic stress is given by 

  ( ) Dτττ G21 =+ −
∇

λ                                                          (1) 
 
where τ represents a stress tensor, G is a relaxation modulus, D is a rate-of-deformation tensor 
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v represents the velocity field, T denotes the transpose of a tensor, ∇ is the gradient operator. 

The upper-convected derivation of the stress tensor 
∇

τ  is defined as 
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and the relaxation time tensor is given by 
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where α is a Giesekus parameter, λ0b is a linear relaxation time. 

The extra function in Eq.4 is of the form 
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where Λ represents a backbone tube stretch, λS denotes a stretch relaxation time  
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λ0S and q (amount of the arms at the end of a backbone) are the adjustable parameters. 

 

3. The PTT-XPP  model 

It was recently shown by Tanner & Nasseri (2003), Tanner (2005) that the well known PTT 
and XPP models can be viewed as the special cases of the general network model i.e. that the 
XPP model can be described as a general network model plus a Giesekus term. Based on this 
finding, a new combined model denoted as the PTT-XPP one has been suggested (Tanner & 
Nasseri (2003)). In more detail, the PTT-XPP model introduces an additional term fgs(τ,D) in 
the equation for viscoelastic stress (Eq.(7)) in comparison with the XPP model and 
simultaneosly neglects both a Giesekus parameter α and 1( ( ) 1).f − −τ I term. The description 
of the PTT-XPP model is given by the following set of the equations: 

Viscoelastic stress is related to the rate-of-deformation tensor by the equation 
 

( ) ( ) DττDττ Gf 2, 1
gs =++ −

∇

λ              (7) 
 
where fgs is a non-affine deformation defined by 
 

( )τDD τf += ξgs          (8) 
 
A simplified relaxation time tensor is of the form 
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and an extra function 
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A backbone tube stretch and a stretch relaxation time are the same as in the XPP model, 
rel.(6). 

 

4. The modified Leonov (mLeonov) model 
The constitutive equation is based on the original Leonov model (Leonov & Prokunin (1994)) 
with the modified dissipation term b proposed by Zatloukal (2003).  

The relation between stress τ and elastic Cauchy strain c is given by 
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where W denotes elastic potential depending on the invariants I1 and I2 of the recoverable 
Finger tensor c-1. Elastic potential is defined by  
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where G denotes a linear elastic modulus, β and n are the nonlinear parameters. 
The dissipation term b is included in the relation for the irreversible rate of strain ep 
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The elastic strain c and the rate-of-deformation tensor D are related as follows 
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The modified parameter b is defined by 

 

[ ]1
1 1

1

sinh ( )( 3)1( ) exp ( ) 3
4 ( )(

I
b I I

I
ν λ

ξ λ
λ ν λ

−⎧ ⎫⎡ ⎤= − − +⎨ ⎬⎣ ⎦ − +⎩ ⎭3) 1
     (15) 

 

where ξ(λ) and ν(λ) are the adjustable parameters subjected to the relaxation time λ. 

As the real polymeric fluids are characterized by a distribution of relaxation times λb,i and 
moduli Gi the stress tensor τ is given as a sum of the contributions from each element of 
relaxation spectra (λb,i, Gi)  
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where N is the number of relaxation times. The relaxation spectrum (λb,i, Gi) is determined 
from the oscillatory measurements by the help of generalized Maxwell model. 

 

5. Experimental 

Two highly branched LDPE materials widely used in the film blowing process (LDPE 
Escorene LD 165BW1, Exxon, USA and LDPE Bralen RB0323, Slovnaft, Slovakia) were 
chosen for the experiments carried out at the temperature of 200oC. 

For both materials the linear viscoleastic properties (storage modulus G′, loss modulus G″), 
transient shear viscosity and first normal stress coefficient were measured with use of the 
Advanced Rheometric Expansion System (ARES 2000) Rheometrics rheometer. Uniaxial 
extensional viscosity was measured using the ARES 2000 rheometer equipped with the SER 
Universal Testing Platform (SER-HV-A01 model) from Xpansion Instruments. Steady shear 
data was obtained from the capillary rheometer RH7-2 (Rosand Precision Ltd.) and from the 
oscillatory measurements (with the help of the Cox-Merz rule) using the ARES 2000 
rheometer. First ψ1 and second ψ2 normal stress coeficients were obtained with the help of 
Han’s method (Han (1976)), for an application for which a slit die was appended to a barrel of 
the capillary rheometer RH7-2.  

 

6. Results and discussion 
The application of the individual models to the experimental data for both materials is 
depicted in Figs.1-8. As can be seen there exist some differences between the models 
behaviour which are presented below. 
 

a) b) 

ig.1 Comparison between the Maxwell model fits and measured complex viscosity η*; 
storage G′ and loss G″ moduli for a) LDPE Escorene LD165BW1, b) LDPE Bralen RB 0323 
at 200°C. 
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Fig.2 Comparison of the measured transient uniaxial extensional viscosity and the predictions 
of the XPP, PTT-XPP and mLeonov model for LDPE Escorene LD165BW1 and LDPE 

t elongational viscosity curves correspond to 
-1

  
 
 
 
 

 
 
 
 

Bralen RB0323 at 200°C (theoretical transien
 e =20, 10, 3.16, 1, 0.316, 0.1, 0.0316, 0.001, 0.000316s  – from left to right). 
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Fig.3 Comparison between experimentally determined transient shear viscosity data and 
predictions of the XPP, PTT-XPP and mLeonov models for LDPE Escorene LD165BW1 and 

DPE Bralen RB0323 at 200°C (theoretical transient shear viscosity curves correspond to  L
e =20, 10, 3.16, 2.3, 1, 0.316, 0.1, 0.0316, 0.001s-1 – taken upwards). 
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Fig.4 Comparison between experimentally determined transient first normal stress coefficient 
and predictions of the XPP, PTT-XPP and mLeonov models for LDPE Escorene LD165BW1 
and LDPE Bralen RB0323 at 200°C (notation of the theoretical curves as in Fig.3 – taken 
upwards) 
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ig.5 Comparison between measured steady shear and uniaxial extensional viscosity data and 
ts/predictions of the XPP, PTT-XPP and mLeonov models for LDPE Escorene LD165BW1 
nd LDPE Bralen RB0323 at 200°C. 

 
 
 
 
 

 
 
 
 
Fig.6 Comparison between measured first normal stress coefficient and fits/predictions of the 

PP, PTT-XPP and mLeonov models for LDPE Escorene LD165BW1 and LDPE Bralen 
B0323 at 200°C. 
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Fig.7 Comparison between measured second normal stress coefficient and fits/predictions of 

e XPP and mLeonov models for LDPE Escorene LD165BW1 and LDPE Bralen RB 0323 at 
00°C. 

 
 
 
 

 
 
 
 
 

ig.8 Comparison between measured second normal stress coefficient and fits/predictions of 
e XPP model for three different value of the Giesekus parameter (α = 0.1/q, 0.33/q, 0.5/q, 

/q and 2.2/q) for LDPE Escorene LD165BW1 at 200°C. 
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For the XPP and PTT-XPP models it was revealed (putting ξ=0 and the same parameter q 
r both models) that the steady uniaxial viscosity is predicted almost identically by both 

mo

ured second normal stress coefficient data (the PTT-XPP model has no possibility to 
pre
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fo
dels and with a very good correspondence to the experimental data. However, the PTT-

XPP model deviates in the prediction of steady shear viscosity. With the aim to improve this 
unwanted behaviour of the PTT-XPP model, a non-zero slip parameter ξ has to be used and 
determined through the fitting of a shear viscosity curve. Unfortunately, its non-zero value 
influences the extensional viscosity, and therefore it is necessary to change the parameter q to 
obtain desirable course of an extensional viscosity curve. This indicates that for a description 
of shear and extensional rheology of the LDPEs by the PTT-XPP model, one has to use more 
parameters as well as more complicated fitting procedure in contrary to the original XPP 
model.  

Furthermore, it was found that neither the XPP model nor the mLeonov one fit accurately 
the meas

dict this data) in spite of the fact that the prediction of the mLeonov model is more closely 
to the measured data than the XPP model. The Giesekus parameter α in the XPP model serves 
for fitting the second normal stress differences. However, the change of the Giesekus 
parameter reflects in the shear and elongational characteristics. When the Giesekus parameter 
is too large strain hardening disappears in extensional viscosity. In our case, the Giesekus 
parameter was adjusted to 0.33/q because larger modification of this parameter leads to an 
unacceptable change in the shear and extensional behaviour. Thus, nor the XPP model is able 
to fit the second normal stress coefficient in a satisfactory manner. 
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