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Summary: The list of all possible boundary conditions corresponding to parti-
cular differential operator is much greater than usually presented in open lite-
rature. Gallery of various types of boundary conditions is presented for coupled 
bending-torsional vibration of a bar in compression and torsion. General 
condition to decide the selfadjointness is derived. Referenced cases are classified 
into selfadjoint or nonselfadjoint boundary conditions. Class of problems is 
distinguished, for which their selfadjointness guarantees the validity of the Euler 
method of stability analysis. For nonselfadjoint boundary conditions the stability 
analysis has to be carried out as dynamical problem even when the bar under 
consideration is loaded only statically. 

 
 
1. Introduction 

Loss of elastic stability in linear continuum systems is in general a dynamical proces even if 
the structure is loaded only statically. The most safe method to asses the stability includes the 
application of dynamic criterion of stability in which inertia effects are included. However, 
there is a broad class of important structural systems including conservative systems which 
can be succesfully solved with the aid of substantially simpler static criterion.  

The applicability of the static criterion is closely connected to the selfadjointness of the 
corresponding boundary value problem. For a broad class of boundary problems including 
eigenvalue problems of the type Lw + λw = 0 the selfadjointness together with positive 
definitivenes is the sufficient condition to apply the static criterion, as the complete spectrum 
is real valued. In this paper we classify some of non-trivial boundary conditions for coupled 
bending-torsional vibration of a bar in compression and torsion according to their 
selfadjointness or nonselfadjointness in order to asses the applicability of the static criterion in 
advance. 

2. Governing equations of  a bar in compression and torsion 

Let us consider a straight slender elastic prismatic bar loaded at unconstrained end  by a 
compressive force P of constant magnitude P and by a torque M of constant magnitude M, 
Figure 1. The directional aspects of the behaviour of vectors P and M we specify later in 
boundary conditions. In sufficiently slender bar considerable bending deformations may 
appear as a consequence of external loading P and/or M with levels  exceeding certain critical 
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values. The originally straight centerline of of a bar in equilibrium may be transformed into 
spatial curve. Let the x-axis of the coordinate system is aligned along the undeformed 
centerline, the y and z-axis are aligned with principal inertia axes of the cross-section. For 
simplicity constant circular cross-section is considered to have equal flexural rigidity EJ in 
both bending planes. Then the governing equations have constant coefficients and for 
harmonic regime are of form 
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where y(x) and z(x) are the flexural deflections in planes xy and xz, respectively. µ = Ml/EJ is 
the nondimensional torque, α = Pl2/EJ is the constant nondimensional compressive force and 
λ2 = ω2m/EJ is the nondimensional frequency parameter with ω standing for the circular 
frequency. Detailed derivation of the governing equation can be found in Bolotin (1961). 
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Figure 1. The absolute and the local coordinate system. 
 

For two point boundary problems the boundary conditions at each end s = 0,1 are prescri-
bed in general as a set of four linear forms at each end  

 
( ) ,0)()()](),(),(),(),(),(),(),([

3

0

)()()3()2()1()3()2()1( =+=�
=j

j
ijs

j
ijsis szbsyaszszszszsysysysyU

(2)
 

( ) 0
3

0

≠+�
=j

ijsijs ba  

where the coeficients aijs, bijs of the linear forms Uis are usually constants, however, in practi-
cal applications they can be functions of any design parameters like α, µ, frequency or any 
other parameter. 
 
 
3. Analysis of the boundary eigenvalue problem 

Here we concentrate on the selfadjointness of the given boundary value problem. Evidently 
the linear differential expression representating the left hand of the governing equation (1) is 
symmetrical in even derivations according to the spatial coordinate x and antisymmetrical in 
odd derivations, so the differential expression L is in the definition domain (0,1) formally 
selfadjoint. Then the selfadjointness of the boundary eigenvalue problem as a whole is deci-
ded only by the boundary conditions, what results in decision on the symmetry or nonsym-



metry of the Dirichlets remainder term. This term is obtained from trivial integration by parts 
of the expression (LW,U) and subsequent transformations with respect to prescribed four 
linearly independent boundary conditions 

 .81,0,0,0,0 43214321
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Then from the rearranged Dirichlets remainder 

 0),( 1827364554637281 =+++++++= sssssssssssssssss UWUWUWUWUWUWUWUWUWM  
obviously the adjoint boundary conditions are expressed by four linear forms (4) 

 iksjksWWWW sjsjsjsj −===== 9,0,0,0,0 4321  (5) 

so that the total of eight conditions (3,5) guarantee the vanishing of the Dirichlets remainder 
term (4). If the systems of linear forms Uis and Wis are equivalent, then the corresponding 
boundary value problem is selfadjoint.  
 
 
4. Conditions of selfadjointness of dynamical boundary conditions 

Dynamical boundary conditions specify in detail the behaviour of the loading force P and of 
the loading torque M throughout the process of the deformation of the bar. Formally they 
express the relations between the internal forces and torques  
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on one side and the possible combinations of geometrical variables y(s), y(1) (s), z(s) and  
z(1)(s) on the other side. For the sign convention of internal forces see Figure 2.  
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Figure 2. Sign convention for internal forces and moments. 

 
 
 
 



Sufficiently general class of dynamical boundary conditions is given by relation 
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in which tij are suitable coefficients characterizing the particular boundary condition. Substi-
tuting to the transformed Dirichlets remainder leads after minor manipulations to adjoint 
boundary conditions 
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As both the given as well as the adjoint boundary conditions are of canonical form, the 
follo-wing conditions are sufficient and necessary conditions of the selfadjointness of the 
dyna-mical boundary conditions (7) 

 322341143113433442242112 ,,,,, tttttttttttt −=−==−=+=−= αµα  (9) 

Note, that there are no constraints on diagonal coefficients t11, t22, t33, t44.  Fo details on 
matrix operations on Dirichlets remainder see Nánási (1994).  

To study the influence of the behaviour of loading force P and torque M at the end of the 
bar on the conservative or nonconservative nature of boundary eigenvalue problem we restrict 
the general form to the following simpler relations 
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in which the parameters θy,θz, εy, εz, ψy, ψz characterize the behaviour of the loading vectors 
P, M with respect to deflected center line.  

Adjoint boundary conditions corresponding to prescribed conditions (10) are of form 
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The conditions for the selfadjointness (x) are now reduced to the set of three relations 

 .1,1,1 =+=+=+ zyzzyy ψψεθεθ  (12) 

 
 



The most general case of seladjoint boundary conditions of the class (10) has the form 
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5. Interpretation of the possible boundary conditions 

Using expressions (6), the seladjoint boundary conditions can be written in terms of internal 
forces:  
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To understand their physical meaning it is useful to rewrite them also in their original form 
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Parameters θy,θz describe the orientation of the compressive force P with respect to the 
absolute or local coordinate system, see Figure 1. The role of parameters ψy, ψz is similar, 
they give information on spatial orientation of the torque M, while parameters εy, εz are the 
nondimensional measure of the excentricity of the compressive force P.  

From the above relations it follows, that for selfadjointness the component εyy  of the 
eventual excentricity of the compressive force is coupled with the component θyy(1) of  
inclination of the compressive force from the centerline, the same holds for components εzz 
and θzz(1). For a torque M to act in a conservative manner the condition ψy + ψz=1 requires 
specific coupling between inclinations ψzy(1) and ψyz(1) which is difficult to maintain 
mechanically without electronic control system. 

Easier to interprete are special cases of the class (10) obtained when for parameters θy,θz, 
εy, εz, ψy, ψz the values 0 or 1 are chosen. 

 
θθθθy = 1 and/or θθθθz = 1 

Under the boundary condition Tη =α y(1) the projection Pξη of the force P on plane ξη  is in 
every instant declined from the local direction ξ by the angle y(1), as depicted in Figure 3a. 
Similar is the interpretation of the case θz = 1 when Tζ =α z(1), now the projection Pξζ of the 
force P on plane ξζ  is declined from the local direction ξ by the angle z(1), Figure 3b. If both 
conditions θy = 1 and θz = 1 hold, then the force P has constant direction aligned with the x- 
direction of the absolute coordinate system. This is a typical conservative force and for µ = 0 
the eigenvalue problem is selfadjoint, therefore the Euler method (static criterion) can be 
used. For coupled problem µ ≠ 0 the selfadjointness requires to orient the torque M according 
to the condition ψy + ψz=1.  



 
 
 

 

. 

x 
y 

z 
ξ η 

Pξη 
 y(1) 

pξη 

-α y(1) 

ζ 

ξ ζ 

Pξζ 
z(1) 

pξζ 

-α z(1) 

η 
 

. 

ξ η 

Pξη 
 y(1) 

ζ 

ξ ζ 

Pξζ 
z(1) 

η 
  

 
Figure 3. Behaviour of the compressive force 
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Figure 4. Behaviour of the loading torque 
 
θθθθy = 0 and/or θθθθz = 0 

With θy = 0 we have Tη =0, now the projection Pξη of the force P on plane ξη  is in every 
instant orthogonal to the direction η in the local coordinate system, Figure 3c. Interpretation 
of the case θz = 0 with Tζ = 0 is similar, see Figure 3d. When both conditions θy = 0 and θz = 0 
hold, then the force P is a typical follower force, her direction is aligned with the direction of 
the deformed centerline. This is a typical nonconservative problem, for µ = 0  is known as 



Beck`s beam. The eigenvalue problem is nonselfadjoint regardless of the behaviour of the 
torque M. 

θθθθy = 1, θθθθz = 0 or θθθθy = 0, θθθθz = 1 

Under conditions θy = 1, θz = 0 the vector P is at every instant confined to the plane ξη of 
the local coordinate system and in this plane oscillates around the local axis ξ. For θy = 0 and 
θz = 1 we have similar confinement to the plane ξζ  of the local  coordinate system. Both 
cases are in general nonselfadjoint, unless suitable excentricity of the point of application of 
the compressive force P is provided.  

 
ψψψψy = 1, εεεεy = 0 or ψψψψz = 1, εεεεz = 0 

For ψy = 1, εy = 0 we have Sζ = -µz(1), then the projection Mξη of the torque M to the plane 
ξη is declined from the local ξ- axis by the angle z(1), Figure 4b. Similar case ψz = 1, εz = 0 is 
on Figure 4a. With both  ψy = 1 and ψz = 1 the torque M has constant direction with respect 
to the absolute coordinate system regardless of the deflections, however, now the boundary 
conditions are nonselfadjoint unlike the case of similar behaviour of the force P.   

 
ψψψψy = 0, εεεεy = 0 or ψψψψz = 0, εεεεz = 0 

With ψy = 0, εy = 0 we have Sζ = 0, now the projection Mξη of the torque M to the plane ξη 
is orthogonal to the local η- axis, Figure 4d. Similar case ψz = 0, εz = 0 is on Figure 4c. With 
both  ψy = 0 and ψz = 0 the torque M has constant direction with respect to the local coor-
dinate system regardless of the deflection – the torque follows the deflected centerline. 
Boundary conditions are nonselfadjoint. With α = 0 the coupled problem reduces to the 
Greenhill`s problem, which is nonconservative. 
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Figure 5. Behaviour of the loading torque and excentric compressive force 



θθθθy = 1, ψy = 0, εy = 1 

In this case we have boundary conditions Tη =α y(1) and Sζ = -αy. The possible realization 
of such boundary conditions is sketched on Figure 5a. The torque has the nature of follower 
load. To ensure the excentricity y, a platform fixed to the end of the beam is required. This 
case corresponds to the nonconservative Reut`s problem, when µ = 0  and the motion is 
restricted on the plane xy. Similar case θz = 1, ψz = 0, εz = 1 is explained by Figure 5b. 

 
θθθθy = 1, ψy = 1, εy = 1 

This case differs from the previous one only by the behaviour of the torque, which now has 
constant direction with respect to the absolute coordinate system, see Figure 5c,d. Neverthere-
less, this boundary conditions are nonselfadjoint. 

 
 
6. Conclusion 

For vibration of coupled bending-torsional vibration of a bar in compression and torsion 
general dynamic boundary conditions have been formulated to investigate the influence of the 
behaviour of the compressive force and torque on selfadjointness of the corresponding 
eigenvalue problem. Adjoint boundary conditions have been derived and conditions of selfad-
jointness have been deduced. The general form of selfadjoint boundary conditions depends on 
three independent parameters describing the eventual excentricity of the compressive force 
and angular aspects of the behaviour of both the loading force and torque. As the general 
selfadjoint boundary conditions are difficult to interprete physically as well as to realize 
mechanically, a series of simplified cases have been analysed. We conclude, that most natural 
formulations lead to nonseladjoint boundary conditions and the corresponding problems are 
nonconservative. Most of selfadjoint cases require specific behaviour of the torque, which can 
be achieved only in artificial way.  
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