
 
 
 

TOWARDS MICROSTRUCTURE-BASED RANDOM FIELD 
MODELS OF HETEROGENEOUS MEDIA  

 
M. Lombardo*, J. Zeman*, G. Falsone* 

 
Summary: In this contribution, we present and mutually compare three 
approaches to the analysis of finite heterogeneous elastic bodies with a random 
arrangement of individual phases. The examined methods are the representatives 
of perturbation techniques, non-perturbative approaches and the tools of the 
mechanics of composite materials, respectively. The emphasis is put on a rational 
construction of the underlying random fields using the spatial statistics related to 
the material in question. Advantages and limitations of the methods are illustrated 
on the elastic analysis of an irregular masonry panel. 
 

1. Introduction 

Almost every material displays a non-homogeneous structure at a sufficient level of resolution 
and this heterogeneity governs the mechanical response of the analyzed structure. Even 
though the theory of heterogeneous media has experienced a significant development in the 
recent decades, the analysis and numerical simulations have mainly been based on an 
assumption of the scale separation. Under this hypothesis, behavior of the body can be treated 
separately on (at least) two well-separated lengthscales, the first one corresponding to the 
macroscopic response, and the second one describing the response of a representative sample 
of the heterogeneous material. This assumption, although acceptable for a variety of material 
systems a loading programs, become too restrictive when addressing e.g. systems with an 
intermediate gap between the relevant scales or for the cases where the scale jump decreases 
as the effect of loading (such as in the failure analyses in heterogeneous media).  

The abovementioned limitations can be overcome when describing the heterogeneous body 
via a random field with spatially varying properties. Not only that such a description is 
physically more correct and free of the separation-of-scale assumption, but is also allows 
exploiting the machinery of stochastic mechanics to arrive at the statistics of the quantity of 
interest. Moreover, under assumption of well-separated lengthscales, the stochastic 
description splits into independent analyses on the macro- and micro-scales, e.g. 
(Jikov at el., 1994; Torquato, 2002). The major difficulty of the methodology is, however, the 
fact that in the computational treatment, the random field is introduced without a clear link 
with the underlying material and its microstructure.  
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In this paper, we present an attempt to propose a framework for a rational construction of a 
random field tied to the heterogeneous material in question. To this end, the potential 
provided by the qualitative method of microstructure description is exploited in Section 2 to 
arrive at the first- and second-order statistics of the random field. With such information in 
hand, three different approaches to the determination of the statistics of a finite body with a 
finite microstructure are examined. In particular, the improved perturbation method is 
introduced first in Section 3, followed by a more refined Karhunen-Loeve series 
representation briefly discussed in Section 4. Section 5 deals with a method originating from 
the techniques developed in the mechanics of composite media. The selected methods are 
mutually compared in Section 6. Finally, Section 7 introduces possible extensions and 
refinements of the studied approaches.  
 

2. Quantification of microstructure morphology and random field statistics 
Consider a sample θ  of a two-phase random medium. A basic description of its 
microstructure is given in terms of the so-called characteristic function 
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where Ωs  and mΩ  are the portion of the sample body Ω  occupied by phase s  and m , 
respectively. Using this function, the stiffness tensor at any point of Ω  can be expressed as 

 ( )( ) ( , ) 1 ( , )s s s mχ θ χ θ= + −C x x C x C  (2) 
where sC  and mC  are the deterministic stiffness matrices of the two constituents. 

In the field of composite materials the characteristic function has to be statistically defined 
through the knowledge of the so-called n-point correlation function. These functions give a 
measure of the probability of finding n points all lying in the region of the domain occupied 
by one of the constituent materials. If we limit our attention to functions of the order one and 
two, a description of a random medium will be provided by 

 ( )(1)S ( ) P ( , ) 1s sχ θ= =x x  (3) 

 ( ) ( ) ( )( )(2)
1 2 1S , P , , 1s s sχ θ χ θ= =2x x x x  (4) 

The one-point probability function in Eq. (3) gives the probability of finding the phase s at x  
and the two-point probability function in Eq.(4) denotes the probability of finding 
simultaneously the phase r at 1x  and the phase s at 2x . 

If the ergodicity assumption is made, the function ( , )sχ θx  can be considered as a random 
field whose statistical moments coincide with the corresponding n-point correlation functions. 
The first two moments are 

 ( ) ( ) ( )1
sE Ssχ  ≡ x x  (5) 

 ( ) ( ) ( )(2)
1 2 1 2E S ,s s sχ χ  ≡ x x x x  (6) 

If the heterogeneous material can be described by a statistically homogeneous field, then 
moments of ( )sχ x  do not depend on the absolute position of the points but on the relative 

one: ( )2 1−x x . This implies that the mean ( )E sχ  x  is constant for any point, while the 
second order moment is 

 ( ) ( ) ( )(2)
1 2 2 1E Ss s sχ χ  ≡ − x x x x  (7) 



It is not difficult to verify that the n-th moments at a single point have the following form 

 ( )E n
s s nχ γ  = ∀ x  (8) 

Eqs.(7) and (8) imply that the second order correlation function of the field ( )sχ x  is given by 

 ( ) ( )(2) (2) 2
2 1 2 1R  S

s s sχ γ− = − −x x x x  (9) 
while the variance is 

 [ ]22 2 2E E
s s s s sχσ χ χ γ γ = − = −   (10) 

The statistical descriptors for a real microstructure can be evaluated on the basis of a digitized 
micrograph of the sample in binary format. A digital representation can be considered as a 
discretization of the characteristic function ( )sχ x  in terms of a 

1 2x xN N×  bitmap. Replacing 

the point coordinates ( )1 2,x x  by the pixel ( ),i j  located in i-th row and j-th column of the 

bitmap the characteristic function is defined by the discrete value ( ),s i jχ . The one-point and 
two-point correlation functions, under the periodic boundary condition (Gajdošík et al., 2006), 
may be estimated by using the following relations 
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where m and n assume here the significance of pixel distance between two generic points and 
% denotes modulo. To automate the acquisition of these functions, software working in 
Matlab was implemented (Falsone & Lombardo, 2006). First step deals with generation of a 
binary image starting from a digital color image of masonry, giving as results the values of sγ  

and ( )(2)S ,s m n . In Figure 1, the results obtained by STONES for an irregular masonry panel 
that will be treated in the analysis part are reported. 
 

 
Figure 1. Example of graphical user interface of STONES for chaotic masonry panel. 



Once that the stochastic field ( )sχ x  is known through its correlation functions, the 
corresponding statistics of the elastic moduli ( )ijC x  can be obtained starting from Eq.(2). In 
particular the mean and the second order correlation are given by 

 ( ) ( ) ( )E ( ) 1s m
ij s ij s ijC C Cγ γ  = + − x  (13) 

 ( ) ( ) ( ) ( )( ) ( ) ( )( )(2) (2)
2 1 2 1R R

ij kl s

s ms m
ij ij kl klC C C C C Cχ− = − × − −x x x x  (14) 

The auto-correlation function of the component ijC  of the stiffness matrix can be obtained 
by setting i k≡ , j l≡  in Eq.(14), that is 

 ( ) ( ) ( ) ( )( )2
(2) (2)

2 1 2 1R R
ij kl s

s m
ij ijC C C Cχ− = − × −x x x x  (15) 

and the variance is 

 ( ) ( )( ) ( ) ( ) ( )( )2 2
2 2 2

ij s
s m s m

C ij ij s s ij ijC C C Cχσ σ γ γ= − = − −  (16) 

The reported relation evidence that the stochastic characterization up to second order of the 
stiffness matrix require the knowledge of sγ  and ( )(2)

2 1Ss −x x , besides of the elements of sC  
and mC . 

It is clear from Eq.(1) that the indicator function ( )sχ x  is a discrete random field with a 
continuous parameter in the spatial domain, and the random field ( )C x  is also discrete with a 
continuous parameter, as can be shown in Figure 2 in terms of a mono-dimensional problem 
(Ostoja-Starzewski, 1998). 

 

3. Stochastic Finite Element Method - Perturbative approaches 
Using the standard finite element formulation, a static analysis requires the solution of the 
following system of equations 

 ( ) ( )  = s sχ χK u F   (17) 
where the load vector  F  is assumed to be deterministic and the global stiffness matrix K  is 
stochastic due to randomness in the material properties. Because the global stiffness matrix 
K  is stochastic, the displacement vector u  is also stochastic. In particular K  and u  depend 
on the random field ( )sχ x . 

The solution of equation (17) requires a representation of the stochastic field in terms of 
discrete random variables. Their statistical properties are related on the chosen finite element 

sC

mC

( )C x

x

Figure 2. From a piecewise-constant realization of a composite to a continuum random field 



mesh and the discretization of the random field is required to define the “best” approximation. 
Two different considerations control the size of an element (Matthies et al., 1997). The first 
way is usually used in deterministic finite elements and the design of the mesh is governed by 
expected stress gradient and geometry. The second is linked with the correlation length 
describing the rate of fluctuation of the random field. The distance between two adjacent 
random variables therefore has to be short enough to capture the essential features of the 
random field. An element size of half of the correlation length suffices for a satisfactory 
representation of the stochastic field. 

The discretization of the random field can be done by using one of the literature methods, 
among which the most simple (even if not the most accurate) is the midpoint method. Usually 
the value at the center of the element is used to represent the stochastic field. If ( )eα  is the 
value of ( )sχ x  at the finite element centroid, the elastic modulus matrix is constant inside it, 
with value 

 ( ) ( )( ) ( ) ( ) ( )
1 2( , )e e e e

m s mx x α α= + − =C C C C C  (18) 
The element stiffness matrix is calculated from standard finite element methodology and is 
expressed as 

 ( ) ( )( ) ( )
( )

( ) ( )( ) ( )T

e

e e e e

A

dAα α= ∫K B x C B x  (19) 

where ( )B x  is the deterministic strain-displacement matrix. After assembling all element 
stiffness matrix in the global stiffness matrix, the solving equation becomes 

 ( ) ( )  = K α u α F  (20) 
α  being the vector collecting the set of random variables. 
Solving Eq.(20) via SFE method means to find the probabilistic information  on the derived 
random variables ( )u α , once that the characteristic of random variables α  are given. In our 
application these last are obtained as mentioned in Section 2. 

There are various approaches to formulating an SFE method to obtain the statistics of 
global displacement vector u . In this work, an improved perturbation technique by Elishakoff 
et al. (1995) is used. It takes into account mean and correlation information on uncertain 
parameters in computing the mathematical expectation of the response; then, the improved 
expectation is used to calculate covariance of the response. Following this approach the mean 
of the response is given by 

 [ ] 1E −=u A F  (21) 
where 

 ( ) 1
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1 1

N N

i j i j
i j

E α α−

= =

′ ′  = −  ∑∑A K K K K  (22) 

and the covariance matrix of displacements is 
 

 ( )
1 1

0 0
− −=u αΣ K CK  (23) 

where 

 [ ] [ ]
1 1

E E
N N

T
i j i j

i j
E α α

= =

′ ′  =  ∑∑C K u u K  (24) 

It can be observed that the stiffness matrix A  differs from 0K  and the mean value of the 
response depends on the second-order moment of uncertain parameters. 



 

4. Karhunen-Loève expansion 
Series expansion methods, used for unknown random material parameters, have provided an 
attractive alternative for the problems involving random fields with large variation. Zhang & 
Ellingwood (1994) showed that any orthogonal expansion of a random field can be related to 
the Karhunen-Loève expansion of that random field. 

The Karhunen-Loève expansion (KL-expansion) for a random field ( ),H θx , function of 
the position vector x  defined over the domain D  and with θ  belonging to the space of 
random events Ω , has the form: 

 ( ) ( ) ( )
1

, i i i
i

H fθ µ λ ξ θ
∞

=

= + ∑x x  (25) 

where µ  is the mean of the field, iλ  and ( )if x  are the eigenvalues and eigenfunctions 

(decreasing in magnitude) of the covariance function ( )1 2,HΣ x x , ( )iξ θ  is a set of random 
variables (Sudret & Der Kiureghian, 2000). 

The KL-expansion is based on the spectral expansion of covariance function ( )1 2,HΣ x x  of 
the field, where 1x  and 2x  are two spatial coordinates. Its use is limited as the covariance 
function is not known a priori, therefore it provides a powerful means for representing input 
random field when the covariance structure is known. Since the covariance function 

( )1 2,HΣ x x  is bounded, symmetric and positive, it has all eigenfunctions mutually orthogonal 

and they form a complete set spanning the function space to which ( ),H θx  belongs. It can be 
decomposed into 

 ( ) ( ) ( )1 2
1

H i i i
i

f fλ
∞

=

Σ = ∑x x x  (26) 

and eigenfunctions ( )if x  satisfying the equation 

 ( ) ( )i j ij
D

f f d δ=∫ x x x  (27) 

Eigenvalues iλ  and eigenfunctions ( )if x  of covariance can be founded solving the 
homogeneous Fredholm integral equation of the second kind 

 ( ) ( ) ( )1 2 2 2 1,H i i i
D

f d fλΣ =∫ x x x x x  (28) 

The parameter ( )iξ θ  in Eq.(25) is a set of uncorrelated standardized random variables which 
can be expressed as 

 ( ) ( ) ( ) ( )1 ,i i
Di

H f dξ θ θ µ
λ

= −  ∫ x x x x  (29) 

with mean and covariance function given by 

 ( ) ( ) ( )0, 0i i jE Eξ θ ξ θ ξ θ = =      (30) 
The most important aspect of the representation (25) is that the spatial random fluctuation has 
been decomposed into a set of deterministic function in the spatial variables multiplyng 
random coefficient that are independent from these variables. 



For practical implementation, the series is approximated by a finite numbers of terms M:  

 ( ) ( ) ( )
1

ˆ ,
M

i i i
i

H fθ µ λ ξ θ
=

= + ∑x x  (31) 

and the corresponding approximate covariance function is 

 ( ) ( ) ( )1 2
1

ˆ
M

H i i i
i

f fλ
=

Σ = ∑x x x  (32) 

Ghanem & Spanos (1991a) have shown this truncated series to be optimal; the covariance 
eigenfunctions basis ( )if x  is optimal in the sense that the mean square error (integrated 
over D ) resulting from a truncation after M-th terms is minimized (with respect to the value it 
would take when any complete basis ( )if x  is chosen). 

If ( ),H θx  is a Gaussian random field, each random variable ( )iξ θ  is Gaussian, then a 
vector of zero-mean uncorrelated Gaussian random variables is an appropriate choice of 

( )iξ θ . The latter can be generated by available subroutines and then multiplied by the 
eigenfunctions and eigenvalues derived from the solution of Eq.(28). 

The efficiency of KL-expansion for simulating random fields hinges crucially on the 
availability of accurate eigenvalues and eigenfunctions of the covariance function by solving 
the Fredholm equation. Eq.(28) can be solved analytically only for few autocovariance 
function and geometries of D . Detailed closed form solutions for some covariance kernels of 
one-dimensional homogeneous field can be found in Ghanem & Spanos (1991b). 

Extension to two-dimensional fields defined for similar correlation functions on a 
rectangular domain can be obtained by product of one-dimensional solution, e.g. 

 ( ) ( )1 2
n i jλ λ λ= ⋅  (33) 

 ( ) ( ) ( ) ( ) ( ) ( )1 2
1 2 1 2,n n i jf f x x f x f x= =x  (34) 

where the superscript (1) and (2) define two orthogonal direction. 

However, for most covariance functions, numerical methods are required. In this paper, the 
Galerkin method is used (Phoon et al., 2002). Each eigenfunctions ( )if x  is approximated by 
a linear combination of chosen basis functions and setting that the error in Eq.(28) to be 
orthogonal to each basis function is obtained a finite order system of linear algebraic 
equation.  

A careful convergence study of the truncated KL-expansion (Huang et al., 2001) showed 
the dependence of the number of terms in series expansion from the ratio of domain length L  
to the correlation parameter b . The number of terms M  in series expansion must be selected 
to produce reasonably accurate simulation of the random field. For weakly correlated process 
(large L b ) a large value of M  is needed. It can be seen that the magnitude of each 
eigenvalue iλ  increases with the domain length. Hence, the decay to zero of eigenvalues is 
slower and a larger number of terms are required to represent the field. To illustrate this 
phenomena, Figure 3 shows decay in eigenvalues with index i. In Figure 4 are plotted four 
eigenfunctions obtained for a two dimensional domain using Galerkin method to solve the 
Fredholm integral equation (28). 

The KL-expansion (Eq.(32)) is used to generate sample function of the input random field. 
To evaluate the statistics of the response, for the finite element problem, Monte Carlo 
Simulation (MCS) is performed. Realizations of elastic modulus of the square plate under 



analysis are numerically simulated using the KL-expansion method. For each of the 
realization, the deterministic problem is solved and the statistics are obtained. 

 

The numerical application showed in Section 6, is performed using the Gaussian random 
field hypothesis for elastic modulus. The C.O.V.=0.3 (coefficient of variation of the mean) 
was selected and its value realistically reproduce the physically variability in elastic properties 
of the random medium sample. For greater value of C.O.V. chosen, negative values of 
Young’s modulus acquire considerable probability, whereas the material properties are 
positive in nature and non physical result could be included in the simulation.  

It should be emphasized that the assumption of Gaussian constitutive tensor is 
questionable, particularly for strongly non-Gaussian media, e.g. bimodal cases corresponding 
to bi-phase composites. For these physical random materials it would be appropriate to use 
Lognormal or Beta probability density. The working assumption of the authors is the 
Gaussian hypothesis which was made in a number of previous works. 

Unbiased estimates of the mean and variance of a given statistical sample are given by 
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Figure 4. Eigenfunctions 1,2,12,24. 

Figure 3. Eigenvalues decaying with eigenvalue index i for square exponential 
covariance 
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Var N E
N

θ
=

 = −  − ∑u u u  (36) 

where simN  is the number of samples considered, ( )iθu  is the nodal displacement vector 

associated with sample iθ , and ( )2
iθu  is the vector containing the square values of nodal 

displacements. 
 

5. Hashin-Strikman variational approach 
The last approach builds on the classical principles of the variational principles for the 
heterogeneous media. The basic principle of the method is the introduction of a reference 
homogeneous body characterized a stiffness tensor C0. For any realization θ of the media, the 
heterogeneity of the material is accounted for using the polarization stress τ(x;θ):  

 ( ) ( ) ( ) ( ) ( )0; ; : ; ; ; ,θ θ θ θ θ= = +σ x C x ε x C ε x τ x  (37) 
where σ and ε denote the stress and strain field in the composite, respectively. The additional 
unknown follows from the stationarity conditions of the associated Hashin-Shtrikman 
functional

( ) ( )( )
( )( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
0 0

1 : : ; : ; : ; d
2

; , ; argstat
( )d d , ;

t

D

D

θ θ θ

θ θ
θ

−

Γ

 + −   
 =  
 − ⋅ − ⋅
 
 

∫

∫ ∫

ε v x C ε v x ω x C x C ω x x

u x τ x
v x f x x v x t x x v x ω x

where v(x) denote the trial kinematically admissible displacement field, ω(x;θ) is a 
realization-dependent polarization field; f(x) and t(x) are the body forces and boundary 
tractions, respectively (Luciano & Willis, 2006). 

When searching for the statistics of the overall response, the critical point of the previous 
relation are to be sought simultaneously for all the realization of the material weighted by the 
probability of occurrence p(θ). To this end, the searched displacement field is decomposed 
into two parts and the polarization field is expanded in the form: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )0 1; ; , ; ; 1 ;s s s mθ θ θ χ θ χ θ= + ≈ + −u x u x u x τ x x τ x x τ x  (38) 
with the u0 denoting the part corresponding to the loading effects, u1 expressing the effects of 
heterogeneity; τs and τm store the polarization fields related to individual phases. When 
performing the optimization for the kinematics first, the optimality conditions for the 
polarization fields attain the form (r,j = s,m): 

( ) ( ) [ ] ( ) ( ) ( ) ( ) ( )

( ) ( )

1 (2)
0 0

0

: : d : , , : d d

: ( )d

r r r r r rj j
jD D D

r r
D

S

x

γ τ

γ

−− + =∑∫ ∫ ∫

∫

x θ x C C τ x x θ x x y Γ x y y x y

x θ x ε x
 (39) 

where Γ0 denotes the function related to the Green’s function of the homogeneous body with 
homogeneous boundary data (Luciano & Willis, 2006) and ε0 is the strain field in the 
reference structure.  

Searching for an approximate solution requires the introduction of a set of basis function 
for the polarization stresses and the action of the function Γ0. In the framework of the finite 
element method, the function can be approximated via (K0 is the reference stiffness matrix) 

 ( ) ( ) ( )[ ] ( )1 T
0 0 0, ,h −≈ =Γ x y Γ x y B x K B y  (40) 



and Eq. (39) reduces to the system of linear equations 

 r r rj j r
j

+ =∑K d K d R  (41) 

with the individual terms given by 
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1
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D
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−= −

=

=

∫

∫ ∫

∫

K x N x C C N x x

K N x x y Γ x y N y x y

R x θ x ε x

 (42) 

where N(x) denote the basis functions used to approximate the sought polarization field. Once 
the approximation of the polarization field is available, the statistics of the response can be 
evaluated by post-processing steps introduced in (Luciano & Willis, 2006). 

6. Numerical example 
In this section, we examine the numerical results obtained from an elastic analysis made on 
the masonry sample shown below. A finite element model was constructed for the panel 
under plane stress, loaded by uniform pressure in vertical direction and by self-weight, shown 
in Figure 5. The two-dimensional domain is a square uniformly discretized into 24 24×  
square elements. 
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Figure 5. Numerical example. (a) Geometry and loading, (b) Typical realization of Gaussian 
field 

 

The FE considered in this analysis is the isoparametric four-node quadrilateral element 
with 8 DOF (horizontal and vertical displacements). The stochastic 2D field of the 
corresponding indicator function ( )sχ x  is characterized by the statistic descriptors obtained 
by STONES as showed in Figure 1. In the context of perturbation approach, the mid-point 
method is adopted to discretize the random field. It must be noticed that the spatial mesh is 
assumed equal to the discretization of the random field, with attention at the general rules 
described in Section 3. The results obtained by first-order perturbation method and improved 

(a) 

q=0.1 MPa (uniform pressure) 

      x1 

    x2 



method have been compared with those obtained via Karhunen-Loève model coupled with the 
Monte Carlo integration. The Hashin-Shtrikman approach is currently in the development. 

For simplicity, Young’s modulus is described by a Gaussian random field and its statistical 
information is directly obtained through the micromechanical description. The more 
appropriate analytical expression of correlation is the square exponential function; if we 
assume the isotropic hypothesis in the constitutive law, the correlation function has the form 

 ( )
2 2

1 2
1 2 2, exp d dd d

b
ρ

 +
= − 

 
 (43) 

where 1d  and 2d  are separation distance, and b  is the parameter describing the correlation 
length. A sample of the Gaussian elastic modulus field generated using KL-expansion (31) is 
shown in Figure 5b. 

Mean and standard deviation for nodal displacements were computed by Eqs. (35) and (36)
with the number of realization in MCS set to 1000. In Figure 6 the mean values of nodal 
vertical displacements in the top of the panel are shown and the values of the mean 
displacements augmented and diminished by their standard deviation values are plotted with 
the dotted line. Moreover, the results of the first-order perturbation method (e.g. (Sudret & 
Der Kiureghian, 2000) are presented for a comparison. 

 

7. Conclusions and future work 
In this contribution, the first numerical results of microstructure-based random field 
simulations are presented. The numerical results obtained for a finite-size elastic panel allow 
us to reach the following conclusions: 

i) The elements of quantification of random spatial statistics can be efficiently used to 
construct the first- and second-order statistics of stationary random fields including the 
anisotropy effects. 

ii) When compared with the classical method, the improved perturbation technique leads 
to narrower estimates of the overall response of the system. Moreover, the method 
utilizes more details of the available statistical data. 

iii) The Karhunen-Loève series representation provides an interesting alternative to the 
perturbation-based method, in particular from the point of view of computational 

Figure 7. Nodal displacements and standard deviation on the top of the square panel 
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efficiency. Nevertheless, the response predicted by the method shows a certain 
deviation from the perturbative approaches.  

iv) The Hashin-Shtrikman approach takes advantage of the specific form of the random 
field and therefore, it can be used as the reference solution. 

v) In overall, the Karhunen-Loève representation seems to be the most attractive method 
for the extension to the non-linear regime. However, before taking this step, a robust 
non-Gaussian variant of the method is needed. 
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